Определить расстояние от точки до заданной прямой. Расстояние от точки до прямой - определение. Метод замены плоскостей проекций

Пусть в трехмерном пространстве зафиксирована прямоугольная система координат Oxyz , задана точка , прямая a и требуется найти расстояние от точки А до прямой a .

Покажем два способа, позволяющих вычислять расстояние от точки до прямой в пространстве. В первом случае нахождение расстояния от точки М 1 до прямой a сводится к нахождению расстояния от точки М 1 до точки H 1 , где H 1 - основание перпендикуляра, опущенного из точкиМ 1 на прямую a . Во втором случае расстояние от точки до плоскости будем находить как высоту параллелограмма.

Итак, приступим.

Первый способ нахождения расстояния от точки до прямой a в пространстве.

Так как по определению расстояние от точки М 1 до прямой a – это длина перпендикуляраM 1 H 1 , то, определив координаты точки H 1 , мы сможем вычислить искомое расстояние как расстояние между точками и по формуле .

Таким образом, задача сводится к нахождению координат основания перпендикуляра, построенного из точки М 1 к прямой a . Сделать это достаточно просто: точка H 1 – это точка пересечения прямой a с плоскостью, проходящей через точку М 1 перпендикулярно к прямой a .

Следовательно, алгоритм, позволяющий определять расстояние от точки до прямой a в пространстве , таков:

Второй способ, позволяющий находить расстояние от точки до прямой a в пространстве.

Так как в условии задачи нам задана прямая a , то мы можем определить ее направляющий вектор и координаты некоторой точки М 3 , лежащей на прямой a . Тогда по координатам точек и мы можем вычислить координаты вектора : (при необходимости обращайтесь к статье координаты вектора через координаты точек его начала и конца).

Отложим векторы и от точки М 3 и построим на них параллелограмм. В этом параллелограмме проведем высоту М 1 H 1 .

Очевидно, высота М 1 H 1 построенного параллелограмма равна искомому расстоянию от точкиМ 1 до прямой a . Найдем .

С одной стороны площадь параллелограмма (обозначим ее S ) может быть найдена черезвекторное произведение векторов и по формуле . С другой стороны площадь параллелограмма равна произведению длины его стороны на высоту, то есть, , где - длина вектора , равная длине стороны рассматриваемого параллелограмма. Следовательно, расстояние от заданной точки М 1 до заданной прямой a может быть найдена из равенства как .

Итак, чтобы найти расстояние от точки до прямой a в пространстве нужно

Решение задач на нахождение расстояния от заданной точки до заданной прямой в пространстве.

Рассмотрим решение примера.

Пример.

Найдите расстояние от точки до прямой .

Решение.

Первый способ.

Напишем уравнение плоскости , проходящей через точку М 1 перпендикулярно заданной прямой:

Найдем координаты точки H 1 - точки пересечения плоскости и заданной прямой. Для этого выполним переход от канонических уравнений прямой к уравнениям двух пересекающихся плоскостей

после чего решим систему линейных уравнений методом Крамера:

Таким образом, .

Осталось вычислить требуемое расстояние от точки до прямой как расстояние между точками и : .

Второй способ.

Числа, стоящие в знаменателях дробей в канонических уравнениях прямой, представляют собой соответствующие координаты направляющего вектора этой прямой, то есть, - направляющий вектор прямой . Вычислим его длину: .

Очевидно, что прямая проходит через точку , тогда вектор с началом в точке и концом в точке есть . Найдем векторное произведение векторов и :
тогда длина этого векторного произведения равна .

Теперь мы располагаем всеми данными, чтобы воспользоваться формулой для вычисления расстояния от заданной точки до заданной плоскости: .

Ответ:

Взаимное расположение прямых в пространстве

Санкт-Петербургский государственный морской технический университет

Кафедра компьютерной графики и информационного обеспечения

ЗАНЯТИЕ 3

ПРАКТИЧЕСКОЕ ЗАДАНИЕ №3

Определение расстояния от точки до прямой линии.

Определить расстояние между точкой и прямой линией можно, выполнив следующие построения (см. рис.1):

· из точки С опустить перпендикуляр на прямую а ;

· отметить точку К пересечения перпендикуляра с прямой;

· измерить величину отрезка КС , началом которого является заданная точка, а концом отмеченная точка пересечения.

Рис.1. Расстояние от точки до прямой.

В основе решения задач такого типа лежит правило проецирования прямого угла: прямой угол проецируется без искажения, если хотя бы одна его сторона параллельна плоскости проекций (т.е. занимает частное положение). Начнем именно с такого случая и рассмотрим построения для определения расстояния от точки С до отрезка прямой АВ .

В данном задании нет тестовых примеров, а варианты для выполнения индивидуальных заданий приведены в таблице1 и таблице2 . Ниже описано решение задачи, а соответствующие построения показаны на рис.2.

1. Определение расстояния от точки до прямой частного положения.

Сначала строятся проекции точки и отрезка. Проекция А1В1 параллельна оси Х . Это означает, что отрезок АВ параллелен плоскости П2 . Если из точки С провести перпендикуляр к АВ , то прямой угол проецируется без искажения именно на плоскость П2 . Это позволяет провести перпендикуляр из точки С2 на проекцию А2В2 .

Падающее меню Чертеж-Отрезок (Draw - Line ) . Установить курсор в точку С2 и зафиксировать ее как первую точку отрезка. Сдвинуть курсор по направлению нормали к отрезку А2В2 и зафиксировать на нем вторую точку в момент появления подсказки Нормаль (Perpendicular ) . Обозначить построенную точку К2 . Включить режим ОРТО(ORTHO ) , и из точки К2 провести вертикальную линию связи до пересечения с проекцией А1 В1 . Точку пересечения обозначить через К1 . Точка К , лежащая на отрезке АВ , является точкой пересечения перпендикуляра, проведенного из точки С , с отрезок АВ . Таким образом, отрезок КС является искомым расстоянием от точки до прямой.

Из построений видно, что отрезок КС занимает общее положение и, следовательно, его проекции искажены. Говоря о расстоянии, всегда имеется в виду истинная величина отрезка , выражающего расстояние. Следовательно, надо найти истинную величину отрезка КС, повернув его до частного положения, например, КС || П1 . Результат построений показан на рис.2.

Из приведенных на рис.2 построений, можно сделать вывод: частное положение прямой (отрезок параллелен П1 или П2 ) позволяет быстро строить проекции расстояния от точки до прямой, но при этом они искажены.

Рис.2. Определение расстояния от точки до прямой частного положения.

2. Определение расстояния от точки до прямой общего положения.

Не всегда в начальном условии отрезок занимает частное положение. При общем начальном положении выполняются следующие построения для определения расстояния от точки до прямой:

a) используя метод преобразования чертежа, перевести отрезок из общего положения в частное – это позволит построить проекции расстояния (искаженные);

b) вторично используя метод, перевести отрезок, соответствующий искомому расстоянию в частное положение – получим проекцию расстояния по величине, равной действительной.

Рассмотрим последовательность построений для определения расстояния от точки А до отрезка общего положения ВС (рис.3).

При первом вращении необходимо получить частное положение отрезка В C . Для этого в слое ТМР надо соединить точки В2 , С2 и А2 . Используя команду Изменить-Повернуть (Modify Rotate ) треугольник В2С2А2 повернуть вокруг точки С2 до положения, когда новая проекция В2*С2 будет располагаться строго горизонтально (точка С неподвижна и, следовательно, ее новая проекция совпадает с первоначальной и обозначения С2* и С1* можно на чертеже не показывать). В результате будут получены новые проекции отрезка В2*С2 и точки: А2*. Далее из точек А2* и В2* проводятся вертикальные, а из точек В1 и А1 горизонтальные линии связи. Пересечение соответствующих линий определит положение точек новой горизонтальной проекции: отрезка В1*С1 и точки А1*.

В полученном частном положении можно построить проекции расстояния для этого: из точки А1* строится нормаль к В1*С1. Точка их взаимного пересечения – К1*. Из этой точки проводится вертикальная линия связи до пересечения с проекцией В2*С2. Отмечается точка К2*. В результате получены проекции отрезка АК , являющегося искомым расстоянием от точки А до отрезка прямой ВС .

Далее необходимо построить проекции расстояния в начальном условии. Для этого из точки К1* удобно провести горизонтальную линию до пересечения с проекцией В1С1 и обозначить точку пересечения К1. Затем строится точка К2 на фронтальной проекции отрезка и проводятся проекции А1К1 и А2К2. В результате построений получены проекции расстояния, но и в начальном и в новом частном положении отрезка ВС, отрезок АК занимает общее положение, а это приводит к тому, что все его проекции искажены.

При втором вращении необходимо повернуть отрезок АК в частное положение, что позволит определить истинную величину расстояния – проекция А2*К2**. Результат всех построений показан на рис.3.

ЗАДАНИЕ №3-1. С до прямой линии частного положения, заданной отрезком АВ . Ответ дать в мм (таблица 1). Убрать проецирующие прмые

Таблица 1

ЗАДАНИЕ №3-2. Найти истинную величину расстояния от точки M до прямой линии общего положения, заданной отрезком ED . Ответ дать в мм (таблица 2).

Таблица 2

Проверка и зачет выполненного ЗАДАНИЯ №3.

Требуется определить расстояние от точки до прямой. Общий план решения задачи:

- через заданную точку проводим плоскость, перпендикулярную заданной прямой;

- находим точку встречи прямой

с плоскостью;

- определяем натуральную величину расстояния.

Через заданную точку проводим плоскость, перпендикулярную прямой АВ . Плоскость задаем пересекающимися горизонталью и фронталью, проекции которых строим согласно алгоритму перпендикулярности (обратная задача).

Находим точку встречи прямой АВ с плоскостью. Это типовая задача о пересечении прямой с плоскостью (см. разд. «Пересечение прямой с плоскостью»).

Перпендикулярность плоскостей

Плоскости взаимно перпендикулярны, если одна из них содержит прямую, перпендикулярную другой плоскости. Поэтому для проведения плоскости, перпендикулярной другой плоскости, необходимо сначала провести перпендикуляр к плоскости, а затем через него провести искомую плоскость. На эпюре плоскость задана двумя пересекающимися прямыми, одна из которых перпендикулярна плоскости ABC .

Если плоскости заданы следами, то возможны следующие случаи:

- если две перпендикулярные плоскости являются проецирующими, то их собирательные следы взаимно перпендикулярны;

- плоскость общего положения и проецирующая плоскость перпендикулярны, ссли собирательный след проецирующей плоскости перпендикулярен одноименному слсду плоскости общего положения;

- если одноименные следы двух плоскостей общего положения перпендикулярны, то плоскости не перпендикулярны друг другу.

Метод замены плоскостей проекций

замены плоскостей проекций

заключается в том, что плоскости про-

екций заменяются другими плоскос-

так, чтобы

геометрический

объект в новой системе плоскостей

проекций стал занимать частное -по

ложение, что позволяет упростить ре-

шение задач. На пространственном ма-

кете показана замена плоскостиV на

новую V 1 . Показано также проециро-

вание точки А на исходные плоскости

проекций и новую плоскость проекций

V 1 . При замене плоскостей проекций

ортогональность системы сохраняется.

Преобразуем пространственный макет в плоскостной путем поворота плоскостей по стрелкам. Получим три плоскости проекций, совмещенные в одну плоскость.

Затем удалим плоскости проекций и

проекции

Из эпюра точки следует правило: при

замене V на V 1 для того, чтобы по-

фронтальную

цию точки, необходимо от новой оси

отложить аппликату точки, взятую из

предыдущей системы плоскостей про-

екций. Аналогично можно доказать,

замене Н на Н 1 необходимо

отложить ординату точки.

Первая типовая задача метода замены плоскостей проекций

Первая типовая задача метода замены плоскостей проекций – это преобразование прямой общего положения сначала в линию уровня, а затем в проецирующую прямую. Эта задача является одной из основных, так как применяется при решении других задач, например, при определении расстояния между параллельными и скрещивающимися прямыми, при определении двугранного угла и т.д.

Производим замену V → V 1 .

ось проводим параллельно горизон-

проекции.

фронтальную проекцию прямой, для

откладываем

аппликаты точек. Новая фронтальная

проекция прямой является НВ прямой.

Сама прямая становится фронталью.

Определяется угол α °.

Производим замену Н → Н 1 . Новую ось проводим перпендикулярно фронтальной проекции прямой. Строим новую горизонтальную проекцию прямой, для чего от новой оси откладываем ординаты прямой, взятые из предыдущей системы плоскостей проекций. Прямая становится горизон- тально-проецирующей прямой и «вырождается» в точку.

Данная статья рассказывает о теме « расстояния от точки до прямой», рассматриваются определения расстояния от точки к прямой с иллюстрированными примерами методом координат. Каждый блок теории в конце имеет показанные примеры решения подобных задач.

Расстояние от точки до прямой находится через определение расстояния от точки до точки. Рассмотрим подробней.

Пусть имеется прямая a и точка М 1 , не принадлежащая заданной прямой. Через нее проведем прямую b , расположенную перпендикулярно относительно прямой a . Точка пересечения прямых возьмем за Н 1 . Получим, что М 1 Н 1 является перпендикуляром, который опустили из точки М 1 к прямой a .

Определение 1

Расстоянием от точки М 1 к прямой a называется расстояние между точками М 1 и Н 1 .

Бывают записи определения с фигурированием длины перпендикуляра.

Определение 2

Расстоянием от точки до прямой называют длину перпендикуляра, проведенного из данной точки к данной прямой.

Определения эквивалентны. Рассмотрим рисунок, приведенный ниже.

Известно, что расстояние от точки до прямой является наименьшим из всех возможных. Рассмотрим это на примере.

Если взять точку Q , лежащую на прямой a , не совпадающую с точкой М 1 , тогда получим, что отрезок М 1 Q называется наклонной, опущенной из М 1 к прямой a . Необходимо обозначить, что перпендикуляр из точки М 1 является меньше, чем любая другая наклонная, проведенная из точки к прямой.

Чтобы доказать это, рассмотрим треугольник М 1 Q 1 Н 1 , где М 1 Q 1 является гипотенузой. Известно, что ее длина всегда больше длины любого из катетов. Значим, имеем, что M 1 H 1 < M 1 Q . Рассмотрим рисунок, приведенный ниже.

Исходные данные для нахождения от точки до прямой позволяют использовать несколько методов решения: через теорему Пифагора, определения синуса, косинуса, тангенса угла и другими. Большинство заданий такого типа решают в школе на уроках геометрии.

Когда при нахождении расстояния от точки до прямой можно ввести прямоугольную систему координат, то применяют метод координат. В данном пункте рассмотрим основных два метода нахождения искомого расстояния от заданной точки.

Первый способ подразумевает поиск расстояния как перпендикуляра, проведенного из М 1 к прямой a . Во втором способе используется нормальное уравнение прямой а для нахождения искомого расстояния.

Если на плоскости имеется точка с координатами M 1 (x 1 , y 1) , расположенная в прямоугольной системе координат, прямая a , а необходимо найти расстояние M 1 H 1 , можно произвести вычисление двумя способами. Рассмотрим их.

Первый способ

Если имеются координаты точки H 1 , равные x 2 , y 2 , тогда расстояние от точки до прямой вычисляется по координатам из формулы M 1 H 1 = (x 2 - x 1) 2 + (y 2 - y 1) 2 .

Теперь перейдем к нахождению координат точки Н 1 .

Известно, что прямая линия в О х у соответствует уравнению прямой на плоскости. Возьмем способ задания прямой a через написание общего уравнения прямой или уравнения с угловым коэффициентом. Составляем уравнение прямой, которая проходит через точку М 1 перпендикулярно заданной прямой a . Прямую обозначим буковой b . Н 1 является точкой пересечения прямых a и b , значит для определения координат необходимо воспользоваться статьей, в которой идет речь о координатах точек пересечения двух прямых.

Видно, что алгоритм нахождения расстояния от заданной точки M 1 (x 1 , y 1) до прямой a проводится согласно пунктам:

Определение 3

  • нахождение общего уравнения прямой a , имеющее вид A 1 x + B 1 y + C 1 = 0 ,или уравнение с угловым коэффициентом, имеющее вид y = k 1 x + b 1 ;
  • получение общего уравнения прямой b , имеющее вид A 2 x + B 2 y + C 2 = 0 или уравнение с угловым коэффициентом y = k 2 x + b 2 , если прямая b пересекает точку М 1 и является перпендикулярной к заданной прямой a ;
  • определение координат x 2 , y 2 точки Н 1 , являющейся точкой пересечения a и b , для этого производится решение системы линейных уравнений A 1 x + B 1 y + C 1 = 0 A 2 x + B 2 y + C 2 = 0 или y = k 1 x + b 1 y = k 2 x + b 2 ;
  • вычисление искомого расстояния от точки до прямой, используя формулу M 1 H 1 = (x 2 - x 1) 2 + (y 2 - y 1) 2 .

Второй способ

Теорема способна помочь ответить на вопрос о нахождении расстояния от заданной точки дот заданной прямой на плоскости.

Теорема

Прямоугольная система координат имеет О х у имеет точку M 1 (x 1 , y 1) , из которой проведена прямая а к плоскости, задаваемая нормальным уравнением плоскости, имеющее вид cos α · x + cos β · y - p = 0 , равно по модулю значению, получаемому в левой части нормального уравнения прямой, вычисляемому при x = x 1 , y = y 1 , значит, что M 1 H 1 = cos α · x 1 + cos β · y 1 - p .

Доказательство

Прямой а соответствует нормальное уравнение плоскости, имеющее вид cos α · x + cos β · y - p = 0 , тогда n → = (cos α , cos β) считается нормальным вектором прямой a при расстоянии от начала координат до прямой a с p единицами. Необходимо изобразить все данные на рисунке, добавить точку с координатами M 1 (x 1 , y 1) , где радиус-вектор точки М 1 - O M 1 → = (x 1 , y 1) . Необходимо провести прямую от точки до прямой, которое обозначим M 1 H 1 . Необходимо показать проекции М 2 и Н 2 точек М 1 и Н 2 на прямую, проходящую через точку O с направляющим вектором вида n → = (cos α , cos β) , а числовую проекцию вектора обозначим как O M 1 → = (x 1 , y 1) к направлению n → = (cos α , cos β) как n p n → O M 1 → .

Вариации зависят от расположения самой точки М 1 . Рассмотрим на рисунке, приведенном ниже.

Результаты фиксируем при помощи формулы M 1 H 1 = n p n → O M → 1 - p . После чего приводим равенство к такому виду M 1 H 1 = cos α · x 1 + cos β · y 1 - p для того, чтобы получить n p n → O M → 1 = cos α · x 1 + cos β · y 1 .

Скалярное произведение векторов в результате дает преобразованную формулу вида n → , O M → 1 = n → · n p n → O M 1 → = 1 · n p n → O M 1 → = n p n → O M 1 → , которая является произведением в координатной форме вида n → , O M 1 → = cos α · x 1 + cos β · y 1 . Значит, получаем, что n p n → O M 1 → = cos α · x 1 + cos β · y 1 . Отсюда следует, что M 1 H 1 = n p n → O M 1 → - p = cos α · x 1 + cos β · y 1 - p . Теорема доказана.

Получаем, что для нахождения расстояния от точки M 1 (x 1 , y 1) к прямой a на плоскости необходимо выполнить несколько действий:

Определение 4

  • получение нормального уравнения прямой a cos α · x + cos β · y - p = 0 , при условии, что его нет в задании;
  • вычисление выражения cos α · x 1 + cos β · y 1 - p , где полученное значение принимает M 1 H 1 .

Применим данные методы на решении задач с нахождением расстояния от точки до плоскости.

Пример 1

Найти расстояние от точки с координатами M 1 (- 1 , 2) к прямой 4 x - 3 y + 35 = 0 .

Решение

Применим первый способ для решения.

Для этого необходимо найти общее уравнение прямой b , которая проходит через заданную точку M 1 (- 1 , 2) , перпендикулярно прямой 4 x - 3 y + 35 = 0 . Из условия видно, что прямая b является перпендикулярной прямой a , тогда ее направляющий вектор имеет координаты, равные (4 , - 3) . Таким образом имеем возможность записать каноническое уравнение прямой b на плоскости, так как имеются координаты точки М 1 , принадлежит прямой b . Определим координаты направляющего вектора прямой b . Получим, что x - (- 1) 4 = y - 2 - 3 ⇔ x + 1 4 = y - 2 - 3 . Полученное каноническое уравнение необходимо преобразовать к общему. Тогда получаем, что

x + 1 4 = y - 2 - 3 ⇔ - 3 · (x + 1) = 4 · (y - 2) ⇔ 3 x + 4 y - 5 = 0

Произведем нахождение координат точек пересечения прямых, которое примем за обозначение Н 1 . Преобразования выглядят таким образом:

4 x - 3 y + 35 = 0 3 x + 4 y - 5 = 0 ⇔ x = 3 4 y - 35 4 3 x + 4 y - 5 = 0 ⇔ x = 3 4 y - 35 4 3 · 3 4 y - 35 4 + 4 y - 5 = 0 ⇔ ⇔ x = 3 4 y - 35 4 y = 5 ⇔ x = 3 4 · 5 - 35 4 y = 5 ⇔ x = - 5 y = 5

Из выше написанного имеем, что координаты точки Н 1 равны (- 5 ; 5) .

Необходимо вычислить расстояние от точки М 1 к прямой a . Имеем, что координаты точек M 1 (- 1 , 2) и H 1 (- 5 , 5) , тогда подставляем в формулу для нахождения расстояния и получаем, что

M 1 H 1 = (- 5 - (- 1) 2 + (5 - 2) 2 = 25 = 5

Второй способ решения.

Для того, чтобы решить другим способом, необходимо получить нормальное уравнение прямой. Вычисляем значение нормирующего множителя и умножаем обе части уравнения 4 x - 3 y + 35 = 0 . Отсюда получим, что нормирующий множитель равен - 1 4 2 + (- 3) 2 = - 1 5 , а нормальное уравнение будет вида - 1 5 · 4 x - 3 y + 35 = - 1 5 · 0 ⇔ - 4 5 x + 3 5 y - 7 = 0 .

По алгоритму вычисления необходимо получить нормальное уравнение прямой и вычислить его со значениями x = - 1 , y = 2 . Тогда получаем, что

4 5 · - 1 + 3 5 · 2 - 7 = - 5

Отсюда получаем, что расстояние от точки M 1 (- 1 , 2) к заданной прямой 4 x - 3 y + 35 = 0 имеет значение - 5 = 5 .

Ответ: 5 .

Видно, что в данном методе важно использование нормального уравнения прямой, так как такой способ является наиболее коротким. Но первый метод удобен тем, что последователен и логичен, хотя имеет больше пунктов вычисления.

Пример 2

На плоскости имеется прямоугольная система координат О х у с точкой M 1 (8 , 0) и прямой y = 1 2 x + 1 . Найти расстояние от заданной точки до прямой.

Решение

Решение первым способом подразумевает приведение заданного уравнения с угловым коэффициентом к уравнению общего вида. Для упрощения можно сделать иначе.

Если произведение угловых коэффициентов перпендикулярных прямых имеют значение - 1 , значит угловой коэффициент прямой перпендикулярной заданной y = 1 2 x + 1 имеет значение 2 . Теперь получим уравнение прямой, проходящее через точку с координатами M 1 (8 , 0) . Имеем, что y - 0 = - 2 · (x - 8) ⇔ y = - 2 x + 16 .

Переходим к нахождению координат точки Н 1 , то есть точкам пересечения y = - 2 x + 16 и y = 1 2 x + 1 . Составляем систему уравнений и получаем:

y = 1 2 x + 1 y = - 2 x + 16 ⇔ y = 1 2 x + 1 1 2 x + 1 = - 2 x + 16 ⇔ y = 1 2 x + 1 x = 6 ⇔ ⇔ y = 1 2 · 6 + 1 x = 6 = y = 4 x = 6 ⇒ H 1 (6 , 4)

Отсюда следует, что расстояние от точки с координатами M 1 (8 , 0) к прямой y = 1 2 x + 1 равно расстоянию от точки начала и точки конца с координатами M 1 (8 , 0) и H 1 (6 , 4) . Вычислим и получим, что M 1 H 1 = 6 - 8 2 + (4 - 0) 2 20 = 2 5 .

Решение вторым способом заключается в переходе от уравнения с коэффициентом к нормальному его виду. То есть получим y = 1 2 x + 1 ⇔ 1 2 x - y + 1 = 0 , тогда значение нормирующего множителя будет - 1 1 2 2 + (- 1) 2 = - 2 5 . Отсюда следует, что нормальное уравнение прямой принимает вид - 2 5 · 1 2 x - y + 1 = - 2 5 · 0 ⇔ - 1 5 x + 2 5 y - 2 5 = 0 . Произведем вычисление от точки M 1 8 , 0 к прямой вида - 1 5 x + 2 5 y - 2 5 = 0 . Получаем:

M 1 H 1 = - 1 5 · 8 + 2 5 · 0 - 2 5 = - 10 5 = 2 5

Ответ: 2 5 .

Пример 3

Необходимо вычислить расстояние от точки с координатами M 1 (- 2 , 4) к прямым 2 x - 3 = 0 и y + 1 = 0 .

Решение

Получаем уравнение нормального вида прямой 2 x - 3 = 0:

2 x - 3 = 0 ⇔ 1 2 · 2 x - 3 = 1 2 · 0 ⇔ x - 3 2 = 0

После чего переходим к вычислению расстояния от точки M 1 - 2 , 4 к прямой x - 3 2 = 0 . Получаем:

M 1 H 1 = - 2 - 3 2 = 3 1 2

Уравнение прямой y + 1 = 0 имеет нормирующий множитель со значением равным -1. Это означает, что уравнение примет вид - y - 1 = 0 . Переходим к вычислению расстояния от точки M 1 (- 2 , 4) к прямой - y - 1 = 0 . Получим, что оно равняется - 4 - 1 = 5 .

Ответ: 3 1 2 и 5 .

Подробно рассмотрим нахождение расстояния от заданной точки плоскости к координатным осям О х и О у.

В прямоугольной системе координат у оси О у имеется уравнение прямой, которое является неполным имеет вида х = 0 , а О х - y = 0 . Уравнения являются нормальными для осей координат, тогда необходимо найти расстояние от точки с координатами M 1 x 1 , y 1 до прямых. Это производится, исходя из формул M 1 H 1 = x 1 и M 1 H 1 = y 1 . Рассмотрим на рисунке, приведенном ниже.

Пример 4

Найти расстояние от точки M 1 (6 , - 7) до координатных прямых, расположенных в плоскости О х у.

Решение

Так как уравнение у = 0 относится к прямой О х, можно найти расстояние от M 1 с заданными координатами, до этой прямой, используя формулу. Получаем, что 6 = 6 .

Так как уравнение х = 0 относится к прямой О у, то можно найти расстояние от М 1 к этой прямой по формуле. Тогда получим, что - 7 = 7 .

Ответ: расстояние от М 1 к О х имеет значение 6 , а от М 1 к О у имеет значение 7 .

Когда в трехмерном пространстве имеем точку с координатами M 1 (x 1 , y 1 , z 1) , необходимо найти расстояние от точки A до прямой a .

Рассмотрим два способа, которые позволяют производить вычисление расстояние от точки до прямой a , расположенной в пространстве. Первый случай рассматривает расстояние от точки М 1 к прямой, где точка на прямой называется Н 1 и является основанием перпендикуляра, проведенного из точки М 1 на прямую a . Второй случай говорит о том, что точки этой плоскости необходимо искать в качестве высоты параллелограмма.

Первый способ

Из определения имеем, что расстояние от точки М 1 , расположенной на прямой а, является длиной перпендикуляра М 1 Н 1 , тогда получим, что при найденных координатах точки Н 1 , тогда найдем расстояние между M 1 (x 1 , y 1 , z 1) и H 1 (x 1 , y 1 , z 1) , исходя из формулы M 1 H 1 = x 2 - x 1 2 + y 2 - y 1 2 + z 2 - z 1 2 .

Получаем, что все решение идет к тому, чтобы найти координаты основания перпендикуляра, проведенного из М 1 на прямую a . Это производится следующим образом: Н 1 является точкой, где пересекаются прямая a с плоскостью, которая проходит через заданную точку.

Значит, алгоритм определения расстояния от точки M 1 (x 1 , y 1 , z 1) к прямой a пространства подразумевает несколько пунктов:

Определение 5

  • составление уравнение плоскости χ в качестве уравнения плоскости, проходящего через заданную точку, находящуюся перпендикулярно прямой;
  • определение координат (x 2 , y 2 , z 2) , принадлежавших точке Н 1 , которая является точкой пересечения прямой a и плоскости χ ;
  • вычисление расстояния от точки до прямой при помощи формулы M 1 H 1 = x 2 - x 1 2 + y 2 - y 1 2 + z 2 - z 1 2 .

Второй способ

Из условия имеем прямую a , тогда можем определить направляющий вектор a → = a x , a y , a z с координатами x 3 , y 3 , z 3 и определенной точки М 3 , принадлежащей прямой a . При наличии координат точек M 1 (x 1 , y 1) и M 3 x 3 , y 3 , z 3 можно произвести вычисление M 3 M 1 → :

M 3 M 1 → = (x 1 - x 3 , y 1 - y 3 , z 1 - z 3)

Следует отложить векторы a → = a x , a y , a z и M 3 M 1 → = x 1 - x 3 , y 1 - y 3 , z 1 - z 3 из точки М 3 , соединим и получим фигуру параллелограмма. М 1 Н 1 является высотой параллелограмма.

Рассмотрим на рисунке, приведенном ниже.

Имеем, что высота М 1 Н 1 является искомым расстоянием, тогда необходимо найти его по формуле. То есть ищем M 1 H 1 .

Обозначим площадь параллелограмма за букву S , находится по формуле, используя вектор a → = (a x , a y , a z) и M 3 M 1 → = x 1 - x 3 . y 1 - y 3 , z 1 - z 3 . Формула площади имеет вид S = a → × M 3 M 1 → . Также площадь фигуры равняется произведению длин его сторон на высоту, получим, что S = a → · M 1 H 1 с a → = a x 2 + a y 2 + a z 2 , являющимся длиной вектора a → = (a x , a y , a z) , являющейся равной стороне параллелограмма. Значит, M 1 H 1 является расстоянием от точки до прямой. Ее нахождение производится по формуле M 1 H 1 = a → × M 3 M 1 → a → .

Для нахождения расстояния от точки с координатами M 1 (x 1 , y 1 , z 1) до прямой a в пространстве, необходимо выполнить несколько пунктов алгоритма:

Определение 6

  • определение направляющего вектора прямой a - a → = (a x , a y , a z) ;
  • вычисление длины направляющего вектора a → = a x 2 + a y 2 + a z 2 ;
  • получение координат x 3 , y 3 , z 3 , принадлежавших точке М 3 , находящейся на прямой а;
  • вычисление координат вектора M 3 M 1 → ;
  • нахождение векторного произведения векторов a → (a x , a y , a z) и M 3 M 1 → = x 1 - x 3 , y 1 - y 3 , z 1 - z 3 в качестве a → × M 3 M 1 → = i → j → k → a x a y a z x 1 - x 3 y 1 - y 3 z 1 - z 3 для получения длины по формуле a → × M 3 M 1 → ;
  • вычисление расстояния от точки до прямой M 1 H 1 = a → × M 3 M 1 → a → .

Решение задач на нахождение расстояния от заданной точки до заданной прямой в пространстве

Пример 5

Найти расстояние от точки с координатами M 1 2 , - 4 , - 1 к прямой x + 1 2 = y - 1 = z + 5 5 .

Решение

Первый способ начинается с записи уравнения плоскости χ , проходящей через М 1 и перпендикулярно заданной точке. Получаем выражение вида:

2 · (x - 2) - 1 · (y - (- 4)) + 5 · (z - (- 1)) = 0 ⇔ 2 x - y + 5 z - 3 = 0

Нужно найти координаты точки H 1 , являющейся точкой пересечения с плоскостью χ к заданной по условию прямой. Следует переходить от канонического вида к пересекающемуся. Тогда получаем систему уравнений вида:

x + 1 2 = y - 1 = z + 5 5 ⇔ - 1 · (x + 1) = 2 · y 5 · (x + 1) = 2 · (z + 5) 5 · y = - 1 · (z + 5) ⇔ x + 2 y + 1 = 0 5 x - 2 z - 5 = 0 5 y + z + 5 = 0 ⇔ x + 2 y + 1 = 0 5 x - 2 z - 5 = 0

Необходимо вычислить систему x + 2 y + 1 = 0 5 x - 2 z - 5 = 0 2 x - y + 5 z - 3 = 0 ⇔ x + 2 y = - 1 5 x - 2 z = 5 2 x - y + 5 z = 3 по методу Крамера, тогда получаем, что:

∆ = 1 2 0 5 0 - 2 2 - 1 5 = - 60 ∆ x = - 1 2 0 5 0 - 2 3 - 1 5 = - 60 ⇔ x = ∆ x ∆ = - 60 - 60 = 1 ∆ y = 1 - 1 0 5 5 2 2 3 5 = 60 ⇒ y = ∆ y ∆ = 60 - 60 = - 1 ∆ z = 1 2 - 1 5 0 5 2 - 1 3 = 0 ⇒ z = ∆ z ∆ = 0 - 60 = 0

Отсюда имеем, что H 1 (1 , - 1 , 0) .

M 1 H 1 = 1 - 2 2 + - 1 - - 4 2 + 0 - - 1 2 = 11

Второй способ необходимо начать с поиска координат в каноническом уравнении. Для этого необходимо обратит внимание на знаменатели дроби. Тогда a → = 2 , - 1 , 5 является направляющим вектором прямой x + 1 2 = y - 1 = z + 5 5 . Необходимо вычислить длину по формуле a → = 2 2 + (- 1) 2 + 5 2 = 30 .

Понятно, что прямая x + 1 2 = y - 1 = z + 5 5 пересекает точку M 3 (- 1 , 0 , - 5) , отсюда имеем, что вектор с началом координат M 3 (- 1 , 0 , - 5) и его концом в точке M 1 2 , - 4 , - 1 является M 3 M 1 → = 3 , - 4 , 4 . Находим векторное произведение a → = (2 , - 1 , 5) и M 3 M 1 → = (3 , - 4 , 4) .

Мы получаем выражение вида a → × M 3 M 1 → = i → j → k → 2 - 1 5 3 - 4 4 = - 4 · i → + 15 · j → - 8 · k → + 20 · i → - 8 · j → = 16 · i → + 7 · j → - 5 · k →

получаем, что длина векторного произведения равняется a → × M 3 M 1 → = 16 2 + 7 2 + - 5 2 = 330 .

Имеются все данные для использования формулы вычисления расстояния от точки для прямлой, поэтому применим ее и получим:

M 1 H 1 = a → × M 3 M 1 → a → = 330 30 = 11

Ответ: 11 .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter