Работа 19 линейная функция и ее график. Как найти угловой коэффициент уравнения

Линейная функция – это функция вида

x-аргумент (независимая переменная),

y- функция (зависимая переменная),

k и b- некоторые постоянные числа

Графиком линейной функции является прямая .

Для построения графика достаточно двух точек, т.к. через две точки можно провести прямую и притом только одну.

Если k˃0, то график расположен в 1-й и 3-й координатных четвертях. Если k˂0, то график расположен в 2-й и 4-й координатных четвертях.

Число k называют угловым коэффициентом прямой графика функции y(x)=kx+b. Если k˃0, то угол наклона прямой y(x)= kx+b к положительному направлению Ох - острый; если k˂0, то этот угол- тупой.

Коэффициент b показывает точку пересечения графика с осью ОУ (0; b).

y(x)=k∙x-- частный случай типичной функции носит название прямая пропорциональность. Графиком является прямая, проходящая через начало координат, поэтому для построения этого графика достаточно одной точки.

График линейной функции

Где коэффициент k = 3, следовательно

График функции будет возрастать и иметь острый угол с осью Ох т.к. коэффициент k имеет знак плюс.

ООФ линейной функции

ОЗФ линейной функции

Кроме случая, где

Так же линейная функция вида

Является функцией общего вида.

Б) Если k=0; b≠0,

В этом случае графиком является прямая параллельная оси Ох и проходящая через точку (0;b).

В) Если k≠0; b≠0, то линейная функция имеет вид y(x)=k∙x+b.

Пример 1 . Построить график функции y(x)= -2x+5

Пример 2 . Найдём нули функции у=3х+1, у=0;

– нули функции.

Ответ: или (;0)

Пример 3 . Определить значение функции y=-x+3 для x=1 и x=-1

y(-1)=-(-1)+3=1+3=4

Ответ: y_1=2; y_2=4.

Пример 4 . Определить координаты их точки пересечения или доказать, что графики не пересекаются. Пусть даны функции y 1 =10∙x-8 и y 2 =-3∙x+5.

Если графики функций пересекаются, то значение функций в этой точке равны

Подставим х=1, то y 1 (1)=10∙1-8=2.

Замечание. Подставить полученное значение аргумента можно и в функцию y 2 =-3∙x+5, тогда получим тот же самый ответ y 2 (1)=-3∙1+5=2.

y=2- ордината точки пересечения.

(1;2)- точка пересечения графиков функций у=10х-8 и у=-3х+5.

Ответ: (1;2)

Пример 5 .

Построить графики функций y 1 (x)= x+3 и y 2 (x)= x-1.

Можно заметить, что коэффициент k=1 для обеих функций.

Из выше сказанного следует, что если коэффициенты линейной функции равны, то их графики в системе координат расположены параллельно.

Пример 6 .

Построим два графика функции.

Первый график имеет формулу

Второй график имеет формулу

В данном случае перед нами график двух прямых, пересекающихся в точке (0;4). Это значит, что коэффициент b, отвечающий за высоту подъёма графика над осью Ох, если х=0. Значит мы может полагать, что коэффициент bу обоих графиков равен 4.

Редакторы: Агеева Любовь Александровна, Гаврилина Анна Викторовна

    1) Область определения функции и область значений функции .

    Область определения функции - это множество всех допустимых действительных значений аргумента x (переменной x ), при которых функция y = f(x) определена. Область значений функции - это множество всех действительных значений y , которые принимает функция.

    В элементарной математике изучаются функции только на множестве действительных чисел.

    2) Нули функции .

    Нуль функции – такое значение аргумента, при котором значение функции равно нулю.

    3) Промежутки знакопостоянства функции .

    Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

    4) Монотонность функции .

    Возрастающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует большее значение функции.

    Убывающая функция (в некотором промежутке) - функция, у которой большему значению аргумента из этого промежутка соответствует меньшее значение функции.

    5) Четность (нечетность) функции .

    Четная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения выполняется равенство f(-x) = f(x) . График четной функции симметричен относительно оси ординат.

    Нечетная функция - функция, у которой область определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f(-x) = - f(x ). График нечетной функции симметричен относительно начала координат.

    6) Ограниченная и неограниченная функции .

    Функция называется ограниченной, если существует такое положительное число M, что |f(x)| ≤ M для всех значений x . Если такого числа не существует, то функция - неограниченная.

    7) Периодическость функции .

    Функция f(x) - периодическая, если существует такое отличное от нуля число T, что для любого x из области определения функции имеет место: f(x+T) = f(x). Такое наименьшее число называется периодом функции. Все тригонометрические функции являются периодическими. (Тригонометрические формулы).

    19. Основные элементарные функции, их свойства и графики. Применение функ-ций в экономике.

Основные элементарные функции. Их свойства и графики

1. Линейная функция.

Линейной функцией называется функция вида , где х - переменная, а и b - действительные числа.

Число а называют угловым коэффициентом прямой, он равен тангенсу угла наклона этой прямой к положительному направлению оси абсцисс. Графиком линейной функции является прямая линия. Она определяется двумя точками.

Свойства линейной функции

1. Область определения - множество всех действительных чисел: Д(y)=R

2. Множество значений - множество всех действительных чисел: Е(у)=R

3. Функция принимает нулевое значение при или.

4. Функция возрастает (убывает) на всей области определения.

5. Линейная функция непрерывная на всей области определения, дифференцируемая и .

2. Квадратичная функция.

Функция вида , где х - переменная, коэффициенты а, b, с - действительные числа, называетсяквадратичной.

Инструкция

Если графиком является прямая линия, проходящая через начало координат и образующая с осью ОX угол α (угол наклона прямой к положительной полуоси ОХ). Функция, описывающая эту прямую, будет иметь вид y = kx. Коэффициент пропорциональности k равен tg α. Если прямая проходит через 2-ю и 4-ю координатные четверти, то k < 0, и является убывающей, если через 1-ю и 3-ю, то k > 0 и функция возрастает.Пусть представляет собой прямую линию, располагающуюся различным образом относительно осей координат. Это линейная функция, и она имеет вид y = kx + b, где переменные x и y стоят в первой степени, а k и b могут принимать как положительные, так и отрицательные значения или равны нулю. Прямая параллельна прямой y = kx и отсекает на оси |b| единиц. Если прямая параллельна оси абсцисс, то k = 0, если оси ординат, то уравнение имеет вид x = const.

Кривая, состоящая из двух ветвей, располагающихся в разных четвертях и симметричных относительно начала координат, гиперболой. Этот график обратную зависимость переменной y от x и описывается уравнением y = k/x. Здесь k ≠ 0 - коэффициент пропорциональности. При этом если k > 0, функция убывает; если же k < 0 - функция возрастает. Таким образом, областью определения функции является вся числовая прямая, кроме x = 0. Ветви приближаются к осям координат как к своим асимптотам. С уменьшением |k| ветки гиперболы все больше «вдавливаются» в координатные углы.

Квадратичная функция имеет вид y = ax2 + bx + с, где a, b и c – величины постоянные и a  0. При выполнении условия b = с = 0, уравнение функции выглядит, как y = ax2 (простейший случай ), а ее график является параболой, проходящей через начало координат. График функции y = ax2 + bx + с имеет ту же форму, что и простейший случай функции, однако ее вершина (точка пересечения с осью OY) лежит не в начале координат.

Параболой является также график степенной функции, выраженной уравнением y = xⁿ, если n – любое четное число. Если n - любое нечетное число, график такой степенной функции будет иметь вид кубической параболы.
В случае, если n – любое , уравнение функции приобретает вид. Графиком функции при нечетном n будет гипербола, а при четном n их ветви будут симметричны относительно оси ОУ.

Еще в школьные годы подробно изучаются функции и строятся их графики. Но, к сожалению, читать график функции и находить ее тип по представленному чертежу практически не учат. В действительности это довольно просто, если помнить основные виды функций.

Инструкция

Если представленным графиком является , которая через начало координат и с осью ОX угол α (который является углом наклона прямой к положительной полуоси), то функция, описывающая такую прямую, будет представлена как y = kx. При этом коэффициент пропорциональности k равен тангенсу угла α.

Если заданная прямая проходит через вторую и четвертую координатные четверти, то k равен 0, и функция возрастает. Пусть представленный график является прямой линией, располагающейся любым образом относительно осей координат. Тогда функцией такого графика будет линейная, которая представлена видом y = kx + b, где переменные y и х стоят в первой , а b и k могут принимать как отрицательные, так и положительные значения или .

Если прямая параллельна прямой с графиком y = kx и отсекает на оси ординат b единиц, тогда уравнение имеет вид x = const, если график параллелен оси абсцисс, то k = 0.

Кривая линия, которая состоит из двух ветвей, симметричных относительно начала координат и располагающихся в разных четвертях, гиперболой. Такой график показывает обратную зависимость переменной y от переменной x и описывается уравнением вида y = k/x, где k не должен быть равен нулю, так как является коэффициентом обратной пропорциональности. При этом, если значение k больше нуля, функция убывает; если же k меньше нуля – возрастает.

Если предложенным графиком является парабола, проходящая через начало координат, ее функция при выполнении условия, что b = с = 0, будет иметь вид y = ax2. Это самый простой случай квадратичной функции. График функции вида y = ax2 + bx + с будет иметь такой же вид, что и простейший случай, однако вершина (точка, где график пересекается с осью ординат) будет находиться не в начале координат. В квадратичной функции, представленной видом y = ax2 + bx + с, значения величин a, b и c – постоянные, при этом a не равно нулю.

Параболой также может являться график степенной функции, выраженной уравнением вида y = xⁿ, только если n является любым четным числом. Если же значение n - нечетное число, такой график степенной функции будет представлен кубической параболой. В случае, если переменная n является любым отрицательным числом, уравнение функции приобретает вид .

Видео по теме

Координата абсолютно любой точки на плоскости определяется двумя ее величинами: по оси абсцисс и оси ординат. Совокупность множества таких точек и представляет собой график функции. По нему вы видите, как меняется значение Y в зависимости от изменения значения Х. Также вы можете определить, на каком участке (промежутке) функция возрастает, а на каком убывает.

Инструкция

Что можно сказать о функции, если ее график представляет собой прямую линию? Посмотрите, проходит ли эта прямая через точку начала отсчета координат (то есть, ту, где величины Х и Y равны 0). Если проходит, то такая функция описывается уравнением y = kx. Легко понять, что чем больше будет значение k, тем ближе к оси ординат будет располагаться эта прямая. А сама ось Y фактически соответствует бесконечно большому значению k.

>>Математика: Линейная функция и ее график

Линейная функция и ее график


Алгоритм построения графика уравнения ах + by + с = 0, который мы сформулировали в § 28, при всей его четкости и определенности математикам не очень нравится. Обычно они выдвигают претензии к первым двум шагам алгоритма. Зачем, говорят они, дважды решать уравнение относительно переменной у: сначала ах1 + Ьу + с = О, затем ахг + Ьу + с = О? Не лучше ли сразу выразить у из уравнения ах + by + с = 0, тогда легче будет проводить вычисления (и, главное, быстрее)? Давайте проверим. Рассмотрим сначала уравнение 3x - 2у + 6 = 0 (см. пример 2 из § 28).

Придавая х конкретные значения, легко вычислить соответствующие значения у. Например, при х = 0 получаем у = 3; при х = -2 имеем у = 0; при х = 2 имеем у = 6; при х = 4 получаем: у = 9.

Видите, как легко и быстро найдены точки (0; 3), (- 2; 0), (2; 6) и (4; 9), которые были выделены в примере 2 из § 28.

Точно так же уравнение Ьх - 2у = 0 (см. пример 4 из § 28) можно было преобразовать к виду 2у =16 -3x . далее у = 2,5x; нетрудно найти точки (0; 0) и (2; 5), удовлетворяющие этому уравнению.

Наконец, уравнение 3x + 2у - 16 = 0 из того же примера можно преобразовать к виду 2y = 16 -3x и далее нетрудно найти точки (0; 0) и (2; 5), которые ему удовлетворяют.

Рассмотрим теперь указанные преобразования в общем виде.


Таким образом, линейное уравнение (1) с двумя переменными х и у всегда можно преобразовать к виду
y = kx + m,(2) где k,m - числа (коэффициенты), причем .

Этот частный вид линейного уравнения будем называть линейной функцией.

С помощью равенства (2) легко, указав конкретное значение х, вычислить соответствующее значение у. Пусть, например,

у = 2х + 3. Тогда:
если х = 0, то у = 3;
если х = 1, то у = 5;
если х = -1, то у = 1;
если х = 3, то у = 9 и т. д.

Обычно эти результаты оформляют в виде таблицы :

Значения у из второй строки таблицы называют значениями линейной функции у = 2х + 3, соответственно, в точках х = 0, х = 1, х = -1,х=-3.

В уравнении (1) переменные хну равноправны, а в уравнении (2) - нет: конкретные значения мы придаем одной из них - переменной х, тогда как значение переменной у зависит от выбранного значения переменной х. Поэтому обычно говорят, что х - независимая переменная (или аргумент), у - зависимая переменная.

Обратите внимание: линейная функция - это специальный вид линейного уравнения с двумя переменными. Графиком уравнения у - kx + т, как всякого линейного уравнения с двумя переменными, является прямая - ее называют также графком линейной функции y = kx + тп. Таким образом, справедлива следующая теорема.


Пример 1. Построить график линейной функции у = 2х + 3.

Решение. Составим таблицу:

Во второй ситуации независимая переменная х, обозначающая, как и в первой ситуации, число дней, может принимать только значения 1, 2, 3, ..., 16. Действительно, если х = 16, то по формуле у = 500 - З0x находим: у = 500 - 30 16 = 20. Значит, уже на 17-й день вывезти со склада 30 т угля не удастся, поскольку на складе к этому дню останется всего 20 т и процесс вывоза угля придется прекратить. Следовательно, уточненная математическая модель второй ситуации выглядит так:

у = 500 - ЗОд:, где х = 1, 2, 3, .... 16.

В третьей ситуации независимая переменная х теоретически может принять любое неотрицательное значение (напр., значение х = 0, значение х = 2, значение х = 3,5 и т. д.), но практически турист не может шагать с постоянной скоростью без сна и отдыха сколько угодно времени. Значит, нам нужно было сделать разумные ограничения на х, скажем, 0 < х < 6 (т. е. турист идет не более 6 ч).

Напомним, что геометрической моделью нестрогого двойного неравенства 0 < х < 6 служит отрезок (рис. 37). Значит, уточненная модель третьей ситуации выглядит так: у = 15 + 4х, где х принадлежит отрезку .

Условимся вместо фразы «х принадлежит множеству X» писать (читают: «элемент х принадлежит множеству X», е - знак принадлежности). Как видите, наше знакомство с математическим языком постоянно продолжается.

Если линейную функцию у = kx + m надо рассматривать не при всех значениях х, а лишь для значений х из некоторого числового промежутка X, то пишут:

Пример 2. Построить график линейной функции:

Решение, а) Составим таблицу для линейной функции y = 2x + 1

Построим на координатной плоскости хОу точки (-3; 7) и (2; -3) и проведем через них прямую линию. Это - график уравнения у = -2x: + 1. Далее, выделим отрезок, соединяющий построенные точки (рис. 38). Этот отрезок и есть график линейной функции у = -2х+1, гдехе [-3, 2].

Обычно говорят так: мы построили график линейной функции у = - 2х + 1 на отрезке [- 3, 2].

б) Чем отличается этот пример от предыдущего? Линейная функция та же (у = -2х + 1), значит, и ее графиком служит та же прямая. Но - будьте внимательны! - на этот раз х е (-3, 2), т. е. значения х = -3 и х = 2 не рассматриваются, они не принадлежат интервалу (- 3, 2). Как мы отмечали концы интервала на координатной прямой? Светлыми кружочками (рис. 39), об этом мы говорили в § 26. Точно так же и точки (- 3; 7) и B; - 3) придется отметить на чертеже светлыми кружочками. Это будет напоминать нам о том, что берутся лишь те точки прямой у = - 2х + 1, которые лежат между точками, отмеченными кружочками (рис. 40). Впрочем, иногда в таких случаях используют не светлые кружочки, а стрелки (рис. 41). Это непринципиально, главное, понимать, о чем идет речь.


Пример 3. Найти наибольшее и наименьшее значения линейной функции на отрезке .
Решение. Составим таблицу для линейной функции

Построим на координатной плоскости хОу точки (0; 4) и (6; 7) и проведем через них прямую - график линейной х функции (рис. 42).

Нам нужно рассмотреть эту линейную функцию не целиком, а на отрезке , т. е. для х е .

Соответствующий отрезок графика выделен на чертеже. Замечаем, что самая большая ордината у точек, принадлежащих выделенной части, равна 7 - это и есть наибольшее значение линейной функции на отрезке . Обычно используют такую запись: у наиб =7.

Отмечаем, что самая маленькая ордината у точек, принадлежащих выделенной на рисунке 42 части прямой, равна 4 - это и есть наименьшее значение линейной функции на отрезке .
Обычно используют такую запись: y наим. = 4.

Пример 4. Найти у наиб и y наим. для линейной функции y = -1,5x + 3,5

а) на отрезке ; б) на интервале (1,5);
в) на полуинтервале .

Решение. Составим таблицу для линейной функции у = -l,5x + 3,5:

Построим на координатной плоскости хОу точки (1; 2) и (5; - 4) и проведем через них прямую (рис. 43-47). Выделим на построенной прямой часть, соответствующую значениям х из отрезка (рис. 43), из интервала A, 5) (рис. 44), из полуинтервала (рис. 47).

а) С помощью рисунка 43 нетрудно сделать вывод, что у наиб = 2 (этого значения линейная функция достигает при х = 1), а у наим. = - 4 (этого значения линейная функция достигает при х = 5).

б) Используя рисунок 44, делаем вывод: ни наибольшего, ни наименьшего значений на заданном интервале у данной линейной функции нет. Почему? Дело в том, что, в отличие от предыдущего случая, оба конца отрезка, в которых как раз и достигались наибольшее и наименьшее значения, из рассмотрения исключены.

в) С помощью рисунка 45 заключаем, что y наиб. = 2 (как и в первом случае), а наименьшего значения у линейной функции нет (как и во втором случае).

г) Используя рисунок 46, делаем вывод: у наиб = 3,5 (этого значения линейная функция достигает при х = 0), а у наим. не существует.

д) С помощью рисунка 47 делаем вывод: y наим = -1 (этого значения линейная функция достигает при х = 3), а у наиб., не существует.

Пример 5. Построить график линейной функции

у = 2х - 6. С помощью графика ответить на следующие вопросы:

а) при каком значении х будет у = 0?
б) при каких значениях х будет у > 0?
в) при каких значениях х будет у < 0?

Ре ш е ни е. Составим таблицу для линейной функции у = 2х- 6:

Через точки (0; - 6) и (3; 0) проведем прямую - график функции у = 2х - 6 (рис. 48).

а) у = 0 при х = 3. График пересекает ось х в точке х = 3, это и есть точка с ординатой у = 0.
б) у > 0 при х > 3. В самом деле если х > 3, то прямая расположена выше оси ж, значит, ординаты соответствующих точек прямой положительны.

в) у < 0 при х < 3. В самом деле если х < 3, то прямая расположена ниже оси х, значит, ординаты соответствующих точек прямой отрицательны. A

Обратите внимание, что в этом примере мы с помощью графика решили:

а) уравнение 2х - 6 = 0 (получили х = 3);
б) неравенство 2х - 6 > 0 (получили х > 3);
в) неравенство 2x - 6 < 0 (получили х < 3).

Замечание. В русском языке часто один и тот же объект называют по-разному, например: «дом», «здание», «сооружение», «коттедж», «особняк», «барак», «хибара», «избушка». В математическом языке ситуация примерно та же. Скажем, равенство с двумя переменными у = кх + m, где к, m - конкретные числа, можно назвать линейной функцией, можно назвать линейным уравнением с двумя переменными х и у (или с двумя неизвестными х и у), можно назвать формулой, можно назвать соотношением, связывающим х и у, можно, наконец, назвать зависимостью между х и у. Это неважно, главное, понимать, что во всех случаях речь идет о математической модели у = кх + m

.

Рассмотрим график линейной функции, изображенный на рисунке 49, а. Если двигаться по этому графику слева направо, то ординаты точек графика все время увеличиваются, мы как бы «поднимаемся в горку». В таких случаях математики употребляют термин возрастание и говорят так: если k>0, то линейная функция у = kx + m возрастает.

Рассмотрим график линейной функции, изображенный на рисунке 49, б. Если двигаться по этому графику слева направо, то ординаты точек графика все время уменьшаются, мы как бы «спускаемся с горки». В таких случаях математики употребляют термин убывание и говорят так: если k < О, то линейная функция у = kx + m убывает.

Линейная функция в жизни

А теперь давайте подведем итог этой темы. Мы с вами уже познакомились с таким понятие, как линейная функция, знаем ее свойства и научились строить графики. Так же, вы рассматривали частные случаи линейной функции и узнали от чего зависит взаимное расположение графиков линейных функций. Но, оказывается, в нашей повседневной жизни мы также постоянно пересекаемся с этой математической моделью.

Давайте мы с вами подумаем, какие реальные жизненные ситуации связаны с таким понятием, как линейные функции? А также, между какими величинами или жизненными ситуациями, возможно, устанавливать линейную зависимость?

Многие из вас, наверное, не совсем представляют, зачем им нужно изучать линейные функции, ведь это вряд ли пригодится в дальнейшей жизни. Но здесь вы глубоко ошибаетесь, потому что с функциями мы сталкиваемся постоянно и повсюду. Так как, даже обычная ежемесячная квартплата также является функцией, которая зависит от многих переменных. А к этим переменным относится метраж площади, количество жильцов, тарифов, использование электроэнергии и т.д.

Конечно же, самыми распространенными примерами функций линейной зависимости, с которыми мы с вами сталкивались – это уроки математики.

Мы с вами решали задачи, где находили расстояния, которые проезжали машины, поезда или проходили пешеходы при определенной скорости движения. Это и есть линейные функции времени движения. Но ведь эти примеры применимы не только в математике, они присутствуют в нашей повседневной жизни.

Калорийности молочных продуктов зависит жирности, а такая зависимость, как правило, является линейной функцией. Так, например, при увеличении сметане процента жирности, увеличивается и калорийность продукта.



Теперь давайте сделаем подсчеты и найдем значения k и b, решив систему уравнений:


Теперь давайте выведем формулу зависимости:

В итоге мы получили линейную зависимость.

Чтобы знать скорость распространения звука в зависимости от температуры, возможно, узнать, применив формулу: v = 331 +0,6t, где v - скорость (в м/с), t - температура. Если мы начертим график этой зависимости, то увидим, что он будет линейным, то есть представлять прямую линию.

И таких практических использований знаний в применении линейной функциональной зависимости можно перечислять долго. Начиная от платы за телефон, длины и роста волос и даже пословиц в литературе. И этот список можно продолжать до бесконечности.

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений