Сила веса, формулы. Академия занимательных наук. Физика. Видео

Регулярно сталкиваюсь с тем, что люди не понимают разницу между весом и массой. Это в общем-то понятно, поскольку мы находимся всю жизнь в непрекращающем своё действие гравитационном поле Земли, и эти величины для нас постоянно связаны. И эта связь ещё и лингвистически закрепляется тем, что мы узнаём массу с помощью весов, "взвешиваем" себя или, скажем, продукты в магазине.
Но давайте всё-таки попробуем развязать эти понятия.

В тонкости (типа отличающегося g в разных местах Земли и прочего) мы вдаваться не будем. Отмечу, что всё это входит в школьный курс физики, поэтому если всё нижесказанное для вас очевидно, не ругайтесь на тех, кто не успел эти вещи понять, а заодно на тех, кто решил это в сотый раз объяснить.) Я надеюсь, что найдутся люди, которым эта заметка пополнит их аппарат понимания окружающего мира.

Итак, поехали. Масса тела - мера его инертности. То есть мера того, насколько трудно изменить скорость этого тела по модулю (разогнать или затормозить) либо по направлению. В системе СИ измеряется в килограммах (кг). Обозначается обычно буквой m. Является неизменным параметром, что на Земле, что в космосе.

Сила тяжести, измеряется в системе СИ в Ньютонах (Н). Это сила, с которой Земля притягивает тело, и равная произведению m*g. Коэффициент g равен 10 м/с2, называется ускорением свободного падения. С этим ускорением начинает двигаться тело относительно земной поверхности, лишённое опоры (в частности, если тело стартовало из неподвижного состояния, его скорость каждую секунду будет увеличиваться на 10 м/с).

А теперь рассмотрим тело массой m, неподвижно лежащее на столе. Для определённости пусть масса равна 1 кг. На это тело вертикально вниз действует сила тяжести mg (собственно сама вертикаль определяется как раз направлением силы тяжести), равная 10 Н. В технической системе единиц эту силу называют килограмм-силой (кгс).

Стол не позволяет разгоняться нашему телу, действуя на него с силой N, направленной вертикально вверх (эту силу правильнее рисовать от стола, но чтобы линии не накладывались, нарисую тоже из центра тела):

N называется силой реакции опоры, уравновешивает силу тяжести (в данном случае равна по модулю тем же самым 10 Ньютонам), так что равнодействующая сила F (сумма всех сил) равна нулю: F = mg - N = 0.

А то, что силы уравновешены, мы видим из второго закона Ньютона F = m*a, согласно которому если ускорение тела a равно нулю (то есть оно либо покоится, как в нашем случае, либо движется равномерно и прямолинейно), то равнодействующая сила F тоже равна нулю.

Вот теперь можно наконец сказать, что такое вес - это сила, с которой тело действует на подставку или подвес. Согласно третьему закону Ньютона эта сила противоположна силе N и равна ей по модулю. То есть в данном случае составляет те же 10 Н = 1 кгс. Вам, может быть, покажется, что всё это излишне сложно, и надо было сразу сказать, что вес и сила тяжести - одно и то же? Ведь они совпадают и по направлению, и по величине.

Нет, на самом деле они отличаются существенно. Сила тяжести действует постоянно. Вес меняется в зависимости от ускорения тела. Давайте приведём примеры.

1. Вы стартуете вверх на скоростном лифте (скоростном, чтобы фаза ускорения была эффектнее/заметнее). Ваша масса, скажем, 70 кг (вы можете пересчитать все числа ниже для вашей массы). Ваш вес в неподвижном лифте (перед стартом) равен 700 Н (или 70 кгс). В момент разгона вверх результирующая сила F направлена вверх (именно она вас и разгоняет), сила реакции N превышает силу тяжести mg, и поскольку ваш вес (сила, с которой вы действуете на пол лифта) по модулю совпадает с N, вы испытываете так называемую перегрузку. Если бы лифт разгонялся с ускорением g, то вы бы испытали вес 140 кгс, то есть перегрузку 2g, в 2 раза превышающую вес в состоянии покоя. На самом деле в штатном режиме таких перегрузок в лифтах не бывает, ускорение обычно не превышает 1 м/с2, что приводит к перегрузке всего 1.1g. Вес в нашем случае составит 77 кгс. Когда лифт разогнался до нужной скорости, ускорение равно нулю, вес возвращается к начальным 70 кгс. При замедлении вес, напротив, уменьшается, и если ускорение при этом по модулю равно 1 м/с2, то перегрузка составит 0.9g. При движении в обратную сторону (вниз) ситуация переворачивается: при разгоне вес уменьшается, на равномерном участке вес восстанавливается, при замедлении вес увеличивается.

2. Вы бежите, и ваш вес в состоянии покоя по-прежнему 70 кгс. В момент бега, когда вы отталкиваетесь от земли, ваш вес превышает 70 кгс. А пока вы летите (одна нога оторвалась от земли, другая - еще не коснулась), ваш вес равен нулю (поскольку вы не воздействуете ни на подставку, ни на подвес). Это - невесомость. Правда, совсем короткая. Таким образом, бег - это чередование перегрузок и невесомости.

Напомню, что сила тяжести во всех этих примерах никуда не девалась, не менялась, и составляла ваши "кровные" 70 кгс = 700 Н.

Теперь существенно удлиним фазу невесомости: представьте, что вы находитесь на МКС (международной космической станции). При этом мы не устранили силу тяжести - она по-прежнему действует на вас - но поскольку и вы, и станция находитесь в одинаковом орбитальном движении, то относительно МКС вы в невесомости. Можно представить себя где угодно в открытом космосе, просто МКС немного реалистичнее.)

Каким будет ваше взаимодействие с объектами? Ваша масса 70 кг, вы берёте в руку объект массой 1 кг, отбрасываете его от себя. В соответствии с законом сохранения импульса основную скорость получит 1-кг-объект, как менее массивный, и бросок будет примерно столь же "легким", как и на Земле. Но если вы попытаетесь оттолкнуться от объекта массой 1000 кг, то вы фактически оттолкнете себя от него, поскольку основную скорость в этом случае получите вы сами, и для разгона своих 70 кг придётся развить бОльшую силу. Чтобы примерно это представить, каково это, можете подойти сейчас к стене и оттолкнуться от неё руками.

Теперь вы вышли из станции в открытый космос и хотите поманипулировать каким-то массивным объектом. Пусть его масса будет пять тонн.

Честно сказать, я бы прямо очень поостерегся управляться с пятитонным объектом. Да, невесомость и все дела. Но достаточно лишь небольшой его скорости относительно МКС, чтобы прижать вам палец или чего-то посерьёзнее. Эти пять тонн сложно переместить: разогнать, остановить.

А уж представлять, как предложил один человек, себя между двумя объектами массой по 100 тонн и вовсе не хочется. Малейшее их встречное движение, и они вас с лёгкостью придавят. В полнейшей, что характерно, невесомости.)

Ну и наконец. Если вы будете весело лететь по МКС и ударитесь об стенку/переборку, то вам будет больно ровно так же, как если бы вы с той же скоростью бежали и ударились об стену/косяк в своей квартире. Потому что удар уменьшает вашу скорость (то есть сообщает вам ускорение со знаком минус), а ваша масса одинакова в обоих случаях. А значит по второму закону Ньютона и сила воздействия будет соразмерна.

Радует, что в фильмах про космос ("Гравитация", "Интерстеллар", сериал "The Expanse") всё более реалистично (пусть и не без огрехов типа Джорджа Клуни, безнадёжно улетающего от Сандры Буллок) отображают базовые вещи, описанные в этом посте.

Резюмирую. Масса "неотчуждаема" от объекта. Если объект сложно разогнать на Земле (особенно если вы постарались минимизировать трение), то его так же сложно разогнать и в космосе. А что касается весов, то когда вы на них становитесь, они просто измеряют силу, с которой их сдавливают, и для удобства отображают эту силу не в Ньютонах, а в кгс. Не дописывая при этом букву "с", чтобы вас не смущать.)

Понятие, с которым мы знакомы с самого раннего детства, - масса. И все же в курсе физики с ее изучением связаны некоторые трудности. Поэтому нужно четко определить, Как ее можно узнать? И почему она не равна весу?

Определение массы

Естественнонаучный смысл этой величины в том, что она определяет количество вещества, которое содержится в теле. Для ее обозначения принято использовать латинскую букву m. Единицей измерения в стандартной системе является килограмм. В задачах и повседневной жизни часто используются и внесистемные: грамм и тонна.

В школьном курсе физики ответ на вопрос: «Что такое масса?» дается при изучении явления инерции. Тогда она определяется, как способность тела сопротивляться изменению скорости своего движения. Поэтому массу еще называют инертной.

Что такое вес?

Во-первых, это сила, то есть вектор. Масса же является скалярной веса всегда приложен к опоре или подвесу и направлен в ту же сторону, что и сила тяжести, то есть вертикально вниз.

Формула для вычисления веса зависит от того, движется ли эта опора (подвес). В случае покоя системы используется такое выражение:

Р = m * g, где Р (в английских источниках используется буква W) — вес тела, g — ускорение свободного падения. Для земли g принято брать равным 9,8 м/с 2 .

Из нее может быть выведена формула массы: m = Р / g.

При движении вниз, то есть в направлении действия веса, его значение уменьшается. Поэтому формула принимает вид:

Р = m (g - а). Здесь «а» — это ускорение движения системы.

То есть при равенстве этих двух ускорений наблюдается состояние невесомости, когда вес тела равен нулю.

Когда тело начинает двигаться вверх, то говорят об увеличении веса. В этой ситуации возникает состояние перегрузки. Потому что вес тела увеличивается, а формула его будет выглядеть так:

Р = m (g + а).

Как масса связана с плотностью?

Решение. 800 кг/м 3 . Для того чтобы воспользоваться уже известной формулой, нужно знать объем пятна. Его легко вычислить, если принять пятно за цилиндр. Тогда формула объема будет такой:

V = π * r 2 * h.

Причем r — это радиус, а h — высота цилиндра. Тогда объем получится равным 668794,88 м 3 . Теперь можно сосчитать массу. Она получится такой: 535034904 кг.

Ответ: масса нефти приблизительно равна 535036 т.

Задача № 5. Условие: Длина самого длинного телефонного кабеля равна 15151 км. Чему равна масса меди, которая пошла на его изготовление, если сечение проводов равно 7,3 см 2 ?

Решение. Плотность меди равна 8900 кг/м 3 . Объем находится по формуле, которая содержит произведение площади основания на высоту (здесь длину кабеля) цилиндра. Но сначала нужно перевести эту площадь в квадратные метры. То есть разделить данное число на 10000. После расчетов получается, что объем всего кабеля приблизительно равен 11000 м 3 .

Теперь нужно перемножить значения плотности и объема, чтобы узнать, чему равна масса. Результатом оказывается число 97900000 кг.

Ответ: масса меди равна 97900 т.

Еще одна задача, связанная с массой

Задача № 6. Условие: Самая большая свеча массой 89867 кг была диаметром 2,59 м. Какой была ее высота?

Решение. Плотность воска — 700 кг/м 3 . Высоту потребуется найти из То есть V нужно разделить на произведение π и квадрата радиуса.

А сам объем вычисляется по массе и плотности. Он оказывается равным 128,38 м 3 . Высота же составила 24,38 м.

Ответ: высота свечи равна 24,38 м.

Определение 1

Вес представляет силу влияния тела на опору (подвес, или иную разновидность крепления), препятствующую падению, и возникающую в поле действия сил тяжести. Единицей измерения веса в СИ принят ньютон.

Понятие веса тела

Понятие «вес» как таковое в физике не считается необходимым. Так, больше говорится о массе или о силе тела. Более содержательной величиной считается сила воздействия на опору, знание которой может помочь, например, при оценке способности конструкции удержать исследуемое тело в заданных условиях.

Вес возможно измерить с помощью пружинных весов, служащих также для косвенного измерения массы при их соответствующем градуировании. В то же время, рычажные весы в этом не нуждаются, поскольку в такой ситуации сравнению подлежат массы, на которые воздействует равное ускорение свободного падения либо сумма ускорений в неинерциальных системах отсчета.

При взвешивании за счет технических пружинных весов, вариации ускорения свободного падения обычно не учитываются, поскольку из влияние зачастую оказывается меньше того, что требуется на практике в отношении точности взвешивания. В некоторой степени, на результатах измерений может отражаться сила Архимеда, при условии взвешивания на рычажных весах тел различной плотности и их сравнительных показателей.

Вес и масса в физике представляют различные понятия. Так, вес считается векторной величиной, с которой тело будет непосредственно воздействовать на горизонтальную опору либо вертикальный подвес. Масса в то же время представляет скалярную величину, меру инертности тела (инертную массу) или заряд гравитационного поля (гравитационную массу). У таких величин будут отличаться и единицы измерения (в СИ масса обозначена в килограммах, а вес- в ньютонах).

Возможны также ситуации с нулевым весом и также ненулевой массой (когда речь идет об одном и том же теле, к примеру, при невесомости вес каждого тела будет равным нулевому значению, а вот масса у всех окажется разной).

Важные формулы для расчета веса тела

Вес тела ($P$), которое покоится в инерциальной системе отсчёта, равнозначен силе тяжести, воздействующей на него, и пропорционален массе $m$, а также ускорению свободного падения $g$ в данной точке.

Замечание 1

Ускорение свободного падения будет зависимым от высоты над земной поверхностью, а также от географических координат точки измерения.

Результатом суточного вращения Земли является широтное уменьшение веса. Так, на экваторе вес окажется меньшим, в сравнении с полюсами.

Другим фактором, влияющим на значение $g$, можно считать гравитационные аномалии, которые обусловлены особенностями строения земной поверхности. При местонахождении тела вблизи другой планеты (не Земли), ускорение свободного падения зачастую определяется за счет массы и размеров этой планеты.

Состояние отсутствия веса (невесомости) наступит в условиях отдаленности тела от притягивающего объекта или его пребывании в свободном падении, то есть в ситуации, когда

${g – w} = 0$.

Тело массой $m$, чей вес анализируется, может оказаться субъектом приложения определенных дополнительных сил, косвенно обусловленных фактом присутствия гравитационного поля, в частности, силы Архимеда и силы трения.

Отличие силы веса тела от силы тяжести

Замечание 2

Сила тяжести и вес представляют собой два различных понятия, участвующих непосредственно в теории гравитационного поля физики. Эти два совершенно разных понятия зачастую истолковывают неверно, используя их в неверном контексте.

Такая ситуация усугубляется еще и тем, что в стандартном понимании понятия массы (имеется в виду свойство материи) и веса также будут восприниматься как тождественные. Именно по этой причине правильное понимание тяжести и веса считается очень важным для научной среды.

Зачастую эти две практически аналогичные концепции применяются в формате взаимозаменяемых. Сила, которая направляется на объект со стороны Земли или другой планеты в нашей Вселенной (в более широком понимании - любого астрономического тела) будет представлять силу тяжести:

Сила, с которой тело оказывает непосредственное воздействие на опору или вертикальный подвес и будет считаться весом тела, обозначаемым как $W$ и представляющим собой векторно направленную величину.

Атомы (молекулы) тела будут отталкиваться от частиц основания. Следствием такого процесса становится:

  • осуществление частичной деформации не только опоры, но и также объекта;
  • возникновение сил упругости;
  • изменение в определенных ситуациях (в незначительной степени) формы тела и опоры, что будет происходить на макроуровне;
  • возникновение силы реакции опоры при параллельном на поверхности тела возникновении силы упругости, что становится ответной реакцией на опору (это и будет представлять вес).












Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Данная презентация предназначена в помощь учащимся 9-10 классов при подготовке темы «Вес тела».

Цели презентации:

  1. Повторить и углубить понятия: «сила тяжести»; «вес тела»; «невесомость».
  2. Акцентировать внимание учащихся на то, что сила тяжести и вес тела – разные силы.
  3. Научить учащихся определять вес тела, движущегося по вертикали.

В повседневной жизни массу тела определяют взвешиванием. Из курса физики 7 класса известно, что сила тяжести прямо пропорциональна массе тела. Поэтому вес тела часто отождествляют с его массой или силой тяжести. С точки зрения физики – это грубейшая ошибка. Вес тела – это сила, но сила тяжести и вес тела – разные силы.

Сила тяжести – частный случай проявления сил всемирного тяготения. Поэтому уместно вспомнить закон всемирного тяготения, а также то, что силы гравитационного притяжения проявляются тогда, когда тела или одно из тел имеют огромные массы (слайд 2).

При применении закона всемирного тяготения для земных условий (слайд 3) планету можно рассматривать как однородный шар, а небольшие тела вблизи ее поверхности как точечные массы. Радиус земли равен 6400 км. Масса Земли равна 6∙10 24 кг.

= ,
где g – ускорение свободного падения.

Вблизи поверхности Земли g = 9,8 м/c 2 ≈ 10 м/c 2 .

Вес тела – сила, с которой это тело действует на горизонтальную опору или растягивает подвес.


Рис.1

На рис. 1 показано тело на опоре. Сила реакции опоры N (F упр) приложена не к опоре, а к находящемуся на ней телу. Модуль силы реакции опоры равен модулю веса по третьему закону Ньютона. Вес тела – частный случай проявления силы упругости. Важнейшей особенностью веса является то, что его значение зависит от ускорения, с которым движется опора или подвес. Вес равен силе тяжести только для покоящегося тела (или тела, движущегося с постоянной скоростью). Если же тело движется с ускорением, то вес может быть и больше, и меньше силы тяжести, и даже равным нулю.

В презентации на примере решения задачи 1 рассматриваются различные случаи определения веса груза массой 500 г, подвешенного к пружине динамометра, в зависимости от характера движения:

а) груз поднимают вверх с ускорением 2 м/c 2 ;
б) груз опускают вниз с ускорением 2 м/c 2 ;
в) груз равномерно поднимают вверх;
г) груз свободно падает.

Задания на расчет веса тела входят в раздел «Динамика». Решение задач на динамику основывается на использовании законов Ньютона с последующим проецированием на выбранные оси координат. Этим определяется последовательность действий.

  1. Выполняют чертеж, на котором изображают силы, действующие на тело (тела), и направление ускорения. Если направление ускорения неизвестно, его выбирают произвольно, а решение задачи дает ответ о правильности выбора.
  2. Записывают второй закон Ньютона в векторном виде.
  3. Выбирают оси. Обычно одну из осей удобно направить вдоль направления ускорения тела, вторую – перпендикулярно ускорению. Выбор осей определяется соображениями удобства: так, чтобы выражения для проекций законов Ньютона имели бы наиболее простой вид.
  4. Полученные в проекциях на оси векторные уравнения дополняют соотношениями, вытекающими из текста условий задачи. Например, уравнениями кинематической связи, определениями физических величин, третьим законом Ньютона.
  5. Используя полученную систему уравнений, пытаются дать ответ на вопрос задачи.

Настройка анимации в презентации позволяет сделать акцент на последовательность действий при решении задач. Это важно, так как навыки, приобретенные при решении задач на расчет веса тела, пригодятся учащимся при изучении других тем и разделов физики.

Решение задачи 1.

1а. Тело движется с ускорением 2 м/c 2 вверх (слайд 7).


Рис.2

1б. Тело движется с ускорением вниз (слайд 8). Ось OY направляем вниз, тогда проекции сил тяжести и упругости в уравнении (2) меняют знаки, и оно имеет вид:

(2) mg – F упр = ma.

Следовательно, Р = m(g-a) = 0,5 кг∙(10 м/c 2 - 2 м/c 2) = 4 Н.

1в. При равномерном движении (слайд 9) уравнение (2) имеет вид:

(2) mg – F упр = 0, т. к. ускорение отсутствует.

Следовательно, Р = mg = 5 Н.

1г. При свободном падении = (слайд 10). Воспользуемся результатом решения задачи 1б:

P = m(g – a) = 0,5 кг(10 м/c 2 – 10 м/c 2) = 0 H.

Состояние, при котором вес тела равен нулю, называют состоянием невесомости.

На тело действует только сила тяжести.

Говоря о невесомости, следует отметить, что длительное состояние невесомости испытывают космонавты во время полета при выключенных двигателях космического

корабля, а чтобы испытать кратковременное состояние невесомости, достаточно просто подпрыгнуть. Бегущий человек в момент, когда его ноги не касаются земли, тоже находится в состоянии невесомости.

Презентация может быть использована на уроке при объяснении темы «Вес тела». В зависимости от уровня подготовки класса учащимся могут быть предложены не все слайды с решениями задачи 1. Например, в классах с повышенной мотивацией к изучению физики достаточно объяснить, как рассчитать вес тела, движущегося с ускорением вверх (задача 1а), а остальные задачи (б, в, г) предоставить для самостоятельного решения с последующей проверкой. Выводы, полученные в результате решения задачи1, ученики должны попытаться сделать самостоятельно.

Выводы (слайд 11).

  1. Вес тела и сила тяжести – разные силы. У них разная природа. Эти силы приложены к разным телам: сила тяжести - к телу; вес тела - к опоре (подвесу).
  2. Вес тела совпадает с силой тяжести только тогда, когда тело неподвижно или движется равномерно и прямолинейно, и другие силы, кроме силы тяжести и реакции опоры (натяжение подвеса), на него не действуют.
  3. Вес тела больше силы тяжести (Р > mg), если ускорение тела направлено в сторону, противоположную направлению силы тяжести.
  4. Вес тела меньше силы тяжести (Р < mg), если ускорение тела совпадает по направлению с силой тяжести.
  5. Состояние, при котором вес тела равен нулю, называют состоянием невесомости. Тело находится в состоянии невесомости, когда оно движется с ускорением свободного падения, то есть когда на него действует только сила тяжести.

Задачи 2 и 3 (слайд 12) могут быть предложены учащимся в качестве домашнего задания.

Презентация «Вес тела» может быть использована для дистанционного обучения. В этом случае рекомендуется:

  1. при просмотре презентации решение задачи 1 записать в тетрадь;
  2. самостоятельно решить задачи 2, 3, применяя предложенную в презентации последовательность действий.

Презентация по теме «Вес тела» позволяет показать теорию решения задач на динамику в интересной, доступной трактовке. Презентация активирует познавательную деятельность учащихся и позволяет формировать правильный подход к решению физических задач.

Литература:

  1. Гринченко Б.И. Физика 10-11. Теория решения задач. Для старшеклассников и поступающих в вузы. – Великие Луки: Великолукская городская типография, 2005.
  2. Генденштейн Л.Э. Физика. 10 класс. В 2 ч. Ч 1./Л.Э. Генденштейн, Ю.И. Дик. – М.: Мнемозина, 2009.
  3. Генденштейн Л.Э. Физика. 10 класс. В 2 ч. Ч 2. Задачник./Л.Э. Генденштейн, Л.А. Кирик, И.М. Гельгафгат, И.Ю. Ненашев.- М.: Мнемозина, 2009.

Интернет-ресурсы:

  1. images.yandex.ru
  2. videocat.chat.ru

Мы часто употребляем фразы наподобие: «Пачка конфет весит 250 грамм» или «я вешу 52 килограмма». Использование таких предложений происходит автоматический. Но что такое вес? Из чего он складывается и как его посчитать?

Для начала нужно понять, что неправильно говорить: «Этот предмет весит Х килограмм». В физике существует два разных понятия – масса и вес . Масса измеряется в килограммах, граммах, тонах и так далее, а вес тела рассчитывается в ньютонах. Поэтому, когда мы говорим, например, что мы весим 52 килограмма, мы на самом деле имеем в виду массу, а не вес.

Масса это мера инертности тела . Чем тело обладает большей инертностью, тем больше времени понадобится, чтобы придать ему скорость. Грубо говоря, чем выше значение массы, тем тяжелее сдвинуть предмет. В международной системе единиц массу измеряют в килограммах. Но её также измеряют и в других единицах, например;

  • унция;
  • фунт;
  • стоун;
  • американская тонна;
  • английская тонна;
  • грамм;
  • миллиграмм и так далее.

Когда мы говорим один, два, три килограмма, мы сравниваем массу с эталонной массой (прообраз которой находится во Франции в МБМВ). Масса обозначается m.

Вес это сила, которая действует на подвес или опору за счёт предмета, притягиваемого силой тяжести. Это векторная величина, а значит у него есть направление (как и у всех сил), в отличие от массы (скалярная величина). Направление всегда идёт в центр Земли (из-за силы тяжести). Например, если мы сидим на стуле, сиденье которого располагается параллельно Земле, то вектор силы направлен строго вниз. Вес обозначается P и рассчитывается в ньютонах [Н].

Если тело находится в движении или покое, то сила тяжести (Fтяж), действующая на тело, равна весу. Это справедливо, если движение происходит вдоль прямой линии относительно Земли, и оно имеет постоянную скорость. Вес действует на опору, а сила тяжести на само тело (которое располагается на опоре). Это разные величины, и независимо от того, что они равны в большинстве случаев, не стоит их путать.

Сила тяжести – это результат притяжения тела к земле, вес – воздействие тела на опору. Так как тело изгибает (деформирует) опору своим весом, возникает ещё одна сила, она называется сила упругости (Fупр). Третий закон Ньютона гласит, что тела взаимодействуют друг с другом с одинаковыми по модулю силами, но разными по вектору. Из этого следует, что для силы упругости должна быть противоположная сила, и эта она называется – сила реакции опоры и обозначается N.

По модулю |N|=|P|. Но так как эти силы разнонаправленные, то, раскрывая модуль, мы получим N= — P. Именно поэтому вес можно измерить динамометром, который состоит из пружинки и шкалы. Если подвесить груз на это устройство, пружинка растянется до определённой отметки на шкале.

Как измерить вес тела

Второй закон Ньютона гласит, что ускорение равно силе, делённой на массу. Таким образом, F=m*a. Так как Fтяж равна P (если тело находится в покое или движется по прямой (относительно Земли) с одинаковой скоростью), то и Р тела будет равняться произведению массы и ускорения (P=m*a).

Мы знаем, как найти массу, и знаем, что такое вес тела, осталось разобраться с ускорением. Ускорение – это физическая векторная величина, которая обозначает изменение скорости тела за единицу времени. Например, объект движется первую секунду со скоростью 4 м/с, а на второй секунде его скорость увеличивается до 8 м/с, значит, его ускорение равняется 2. По международной системе единиц ускорение рассчитывается в метрах на секунду в квадрате [м/с 2 ].

Если поместить тело в специальную среду, где будет отсутствовать сила сопротивления воздуха – вакуум, и убрать опору, то объект начнёт лететь равноускоренно. Название этого явления - ускорение свободного падения , которое обозначается g и рассчитывается в метрах на секунду в квадрате [м/с 2 ].

Интересно, что ускорение не зависит от массы тела, а значит если мы кинем листок бумажки и гирю на Земле в специальных условиях, при которых отсутствует воздух (вакуум), то эти предметы приземлятся в одно и то же время. Так как листок имеет большую площадь поверхности и относительно маленькую массу, то для того чтобы упасть, ему приходятся сталкиваться с большим сопротивлением воздуха. В вакууме такого не происходит , и поэтому перо, листок бумаги, гиря, пушечное ядро и другие предметы будут лететь с одной и той же скоростью и упадут в одно время (при условии, что они начнут лететь в одно и то же время, и их первоначальная скорость будет равняться нулю).

Так как Земля имеет форму геоида (или по-другому эллипсоида), а не идеального шара, то и ускорение свободного падения в разных участках Земли разное. Например, на экваторе оно равно 9,832 м/с 2 , а на полюсах 9,780 м/с 2 . Это происходит потому, что на некоторых участках Земли расстояние до ядра больше, а на некоторых меньше. Чем ближе объект находится к центру, тем сильнее он притягивается. Чем объект дальше, тем сила тяжести меньше. Обычно, в школе округляют это значение до 10, это делается для удобства расчётов. Если же необходимо измерить более точно (в инженерном или военном деле и так далее), то берут конкретные значения.

Таким образом, формула для расчёта веса телу будет выглядеть следующим образом P=m*g .

Примеры задач для расчёта веса тела

Первая задача . На стол положили груз массой 2 килограмма. Каков вес груза?

Для решения этой задачи нам понадобится формула по расчёту веса P=m*g. Мы знаем массу тела, а ускорение свободного падения примерно составляет 9,8 м/с 2 . Подставляем эти данные в формулу и получим P=2*9,8=19,6 Н. Ответ: 19,6 Н.

Вторая задача . На стол положили парафиновый шарик, объёмом 0,1 м 3 . Каков вес шарика?

Эту задачу необходимо решать в следующей последовательности;

  1. Для начала нам надо вспомнить формулу веса P=m*g. Ускорение нам известно – 9,8 м/с 2 . Осталось найти массу.
  2. Масса рассчитывается по формуле m=p*V, где p – это плотность, а V – объём. Плотность парафина можно посмотреть в таблице, объём нам известен.
  3. Необходимо подставить значения в формулу, для нахождения массы. m=900*0,1=90 кг.
  4. Теперь подставляем значения в первую формулу, для нахождения веса. P=90*9,9=882 Н.

Ответ: 882 Н.

Видео

В этом видео уроке разбирается тема — сила тяжести и вес тела.

Не получили ответ на свой вопрос? Предложите авторам тему.