Противопожарные огнезащитные вспучивающиеся краски, лаки, обмазки. Рецептуры огнезащитных вспучивающихся покрытий на основе эпоксидных смол Механизм вспучивания огнезащиты

Конструктивные способы огнезащиты включают в себя облицовку объекта огнезащиты материалами или иные конструктивные решения по его огнезащите (облицовка кирпичом, вермикулитовыми плитами и др. теплоизоляционными материалами, закрепленными на конструкции определенным образом, использование бетона, штукатурок. Использование плитных, рулонных, листовых материалов.).

Направлено на увеличение площади поперечного сечения, создание теплоизоляционных слоев или экранов, устройство огнестойких преград для замедления прогрева, сохранение несущей способности конструкции, исключение термического разложения, воспламенения и горения материалов и предотвращение распространения огня.

Для конструкционных методов используется тяжелый и легкий бетон, глиняный силикат, кирпич, цементно-песчаные штукатурки.

Огнезащитная обработка - нанесение огнезащитного состава на поверхность объекта огнезащиты (окраска, обмазка, штукатурка).

Вспучивающиеся покрытия (ВП) являются наиболее перспективными покрытиями для огнезащиты строительных конструкций. Они наносятся тонким слоем и В процессе эксплуатации выполняют функции лакокрасочного декоративного материала. При действии высоких температур покрытие вспучивается, значительно увеличиваясь в объеме с образованием коксового пористого слоя.

Проблема разработки ВП с высокими огнезащитными свойствами связана как с обеспечением вспучиваемости и стабильности угольного слоя при действии высоких температур, так и адгезии к древесине, сохранения декоративных и огнезащитных свойств при длительной эксплуатации, простоте их устройства.

Вспучивающиеся покрытия являются многокомпонентными системами, состоящими из связующего, антипирена н пенообразователей - вспучивающих добавок. В качестве связующих в основном используют полимеры, проявляющие склонность к реакциям циклизации, конденсации, сшивания и образования нелетучих карбонизированных продуктов: аминоальдегидные полимеры, латексы на основе сополимеров винилиденхлорида с ви-нилхлоридом, галоидированные синтетические и натуральные каучуки, эпоксидные полимеры, полиуретаны и др. Компоненты, обусловливающие вспучивающие и огнезащитные свойства покрытий, подразделяются На следующие группы:



1. Вещества, разлагающиеся в интервале 100... 250 °С с образованием кислот. К ним относятся неорганические соли фосфорной и борной кислот (ортофосфаты аммония, полифосфаты аммония, бура и др.) и фосфорорганические вещества (фосфаты мочевины или меламина, фосфакрилат, полифосфориламид и др.).

2. Вещества, разлагающиеся с выделением паров воды или негорючих газов (полисахариды): крахмал, декстрин, пентаэритрит и его гомологи, стереоизомерные гекситы - манит, сорбит и др.

3. Синергиты. К ним относятся мочевина, меламин, дициандиамид, гуанидин, мелем. Также известно применение сульфогуанидина ароматических сульфамидов, б-амино-2-нитробензойной кислоты, сульфатов аминобензойной кислоты, производных триазина и других соединений.

В качестве антипиренов входит орто или полифосфаты аммония. В качестве газообразных добавок входят мочевина, дициан диамид, карбомиды и формальдегидные смолы. Общее содержание должно быть до 70%. К коксообразным добавкам относят крахмал, декстрин сахара. При нагревании под действием кислотного катализатора легко деградируются.

Жаростойкие наполнители и стабилизаторы вспеннного слоя

Ортофосфат аммония.

Антипирены – вещества, которые разлагаются под действием температуры

Не поддерживает горения, -пленка

При использовании они хорошо раствормы в воде поэтому нужно стабилизировать кислотность состава.

Вводят волокнистые наполнители не только для загущения но и еще их используют как стабилизатор вспененного слоя. Они являются неориентированными молекулами молекулами. Они движутся при нагревании за вспученным слоем и застывают в виде каркаса. При действии температуры дают усадку и выгорают. Соответственно каркас оплавляется, спекается. Используются терморасширяющиеся графиты. В отличие от перлита и вермиулита можно регулировать интервал разложения и регулировать объем вспучивания. Обладает слоистой кристаллической решеткой. Из-за наличия неподеленных электронных пар углерода графит может соединяться с гостевыми атомами. В зависимости от гостя может проявлять себя как окислитель или как восстановитель. Например с атомами металла (восстановитель) образует карбиды (карбид кальция или минусовая степень окисления). А если с окислителем (с серой) то бисульфат графита, степень плюсовая. Это соединение при нагревании 500-1000С расширяется в объеме и вспучивается засчет того что при нагревании выделяются газы способные разорвать эти плоскости. Получение: обработка природного графита бихроматом натрия в концентрированной серной кислоте

Физико-механические и огнезащитные свойства покрытий можно улучшить введением следующих заполнителей:

Волокнистый заполнитель (распушенный асбест, стекловолокно, минеральная вата, коалиновое и базальтовое волокно). Для улучшения прочности и технологических свойств наносимой массы

Мочевин формальдегидная смола. Для улучшения удобоукладываемости и увеличения адгезии.

Дициан диамид. Повышает прочность при огневом воздействии, улучшает вспучиваемость и повышает огнестойкость.

Окись цинка. Повышает атмосферостойкость. Применяется при возрастании влажности.

Кремнефтористый натрий. Обеспечивает нарастание прочности. Позволяет вводить более толстым слоем за один раз.

Огнезащитные покрытия на основе вспученного вермикулита . Состав: вермикулитовая руда 14%, вермикулит регидротированный 2,8% и дегидратированный 0,9%, распушенный асбест 1,6%, жидкое стекло 40%, мочевин формальдегидная смола 10%, окись цинка 2,7%, дициан диамид 7,5%.

Покрытия на вермикулите очень трудно наносить, хрупкие, при влажности 95% набухают и отслаиваются. Огнестойкость 60мин. Эти добавки не только улучшают свойства в процессе эксплуатации но и улучшают свойства при огневом испытании.

Вспучиваются засчет выделения газов, разложения смолы и жидкого стекла и дегидратированного вермикулита. Для МК tкрит на 47 минуте наступает.

Композиционная огнезащита позволяет усилить физические эффекты блокирования теплового потока в защищаемую конструкцию, реализуемые при использовании простых способов огнезащиты.

В качестве примера рациональных вариантов композиционной огнезащиты можно предложить следующие конструкции:

а) сочетание термостойких волокнистых или пористых плит с покрытиями на минеральных вяжущих, выделяющих при нагреве водяной пар;

б) сочетание термостойких волокнистых или пористых материалов пониженной плотности со вспучивающимся покрытием;

в) сочетание волокнистых теплоизоляционных материалов с гипсокартонными листами;

г) сочетание волокнистых теплоизоляционных материалов с плитами вермикулитовыми на основе минеральных вяжущих.

д) кирпичная кладка с базальо-волокнистыми плитами или минеральными листами.

Источник: Еремина Т. Ю., Гравит М. В., Дмитриева Ю. Н. «Особенности и принципы построения рецептур огнезащитных вспучивающихся композиций на основе эпоксидных смол»

Принцип получения композиционных полимерных материалов заключается в создании заранее заданной комбинации двух и более различных фаз (наполнителей и матрицы) с помощью каких-либо технологических приемов. В результате наполнения получают полимерные материалы, основные физические и механические свойства которых существенно отличаются от свойств матрицы.

По существу, это универсальный принцип создания полимерных композиционных материалов с новым комплексом физических и механических свойств, определяемых микрогетерогенностью системы и фазовыми взаимодействиями на границе раздела фаз полимер - наполнитель . При этом свойства композиционного материала практически в одинаковой степени зависят от свойств как наполнителя, так и исходного полимера.

При разработке огнезащитных красок (и органоразбавляемых, и водоразбавляемых) в их составе используют модифицирующие и технологические добавки, что обеспечивает улучшение эксплуатационных характеристик покрытий. Например, в качестве современных инновационных ингредиентов, снижающих пожарную опасность покрытий, применяются полые стеклянные микрошарики (стеклосферы) и углеродные нанотрубки.

Углеродные нанотрубки - это достаточно новый перспективный материал, представляющий собой полые трубки размером 20-30000 нм, состоящие из свернутых слоев углерода. Производство нанотрубок во всем мире начато недавно и находится в России пока на полупромышленном уровне. Нанотрубки относятся к чрезвычайно дорогим добавкам: стоимость 1 г составляет от 25 до 500 евро в зависимости от типа.

Использование в составах красок модифицирующих добавок на основе керамических микросфер обеспечивает такие технологические свойства покрытий, как износостойкость, глянцевость и др., а модифицирующих добавок на основе стеклянных микросфер - снижение плотности краски, улучшение ее совместимости с различными полимерными связующими, снижение усадки, вязкость композиций по сравнению с геометрически не оформленными частицами других наполнителей, уменьшение абразивного действия. Применение полных стеклосфер в лаках и красках позволяет частично заменить белые пигменты и улучшить физико-механические свойства покрытий.

Полые стеклосферы относят к дорогим наполнителям: стоимость 1 кг составляет от 3 до 30 долл. США. Однако их применение экономически оправданно, поскольку содержание в полимере полых стеклосфер в количестве 5-20% за счет их низкой плотности существенно снижает стоимость единицы объема материала.

В качестве наполнителей из группы минеральных компонентов в рецептурах, как правило, присутствуют: микроволластонит, каолин, мраморная крошка, слюда и (или) инертные баритовые наполнители; гидроксид алюминия или магния, вспученный и не вспученный вермикулит, перлит и др. Минеральный наполнитель позволяет повысить термостойкость, химическую стойкость покрытия, улучшает его огнестойкие характеристики.

Компоненты интумесцентной системы выбираются из следующей группы: фосфорсодержащие соединения (обычно полифосфаты аммония), гидроксид алюминия или магния, борат цинка, меламин, дипентаэритрит, пентаэритрит.

В качестве пленкообразователей в интумесцентных краскахшироко используется практически все известные полимерные и неорганические связующие: полиметилфенилсилоксановые каучуки; полиуретановые смолы на основе простых полиэфиров и дифенилметандиизоцианатов или толуилендиизоцианата; акриловые сополимеры (например, сополимеры бутилметакрилата или метилметакрилата с метакриловой кислотой и дивинилом); акриловые дисперсии (например, на основе стиролакрилового сополимера); различные эпоксидные смолы, в том числе модифицированные и водные.

В качестве органического растворителя используют обычные органические растворители, в которых растворяются указанные выше полимерные связующие, например этилацетат , бутилацетат , ацетон и др.

В настоящее время лидирующее положение среди огнезащитных композиций на эпоксидных смолах, не содержащих растворителей, занимают составы зарубежных производителей (AkzoNobel, Leighs Paints).

Разработка отечественного огнезащитного состава на эпоксидной основе с заявленными свойствами позволит отказаться от использования импортных аналогов, уменьшить стоимость огнезащитных работ, облегчит вес огнезащитного покрытия на конструкции и в целом повысит конкурентоспособность российских производителей огнезащитных композиций на эпоксидных смолах.

В настоящее время разработана исследовательская программа получения огнезащитной вспучивающейся эпоксидной композиции. Целью данной работы является разработка вспучивающегося огнезащитного покрытия на эпоксидной основе, которое способно обеспечить предел огнестойкости строительной конструкции 120 мин при толщине покрытия не более 4 мм и которое можно наносить в условиях пониженных температур (до минус 60 о С) и повышенной влажности (100%), а также в условиях промышленной атмосферы с сохранением эксплуатационных и огнезащитных свойств (по данным ускоренных испытаний) не менее 25 лет.

В начале исследовательской работы был осуществлен автоматизированный патентный поиск аналогов разрабатываемого покрытия в пределах Российской Федерации и ведущих зарубежных стран. Тема поиска - «Огнезащитный состав для стальных строительных конструкций. Эпоксидные композиции».

Затем был проведен анализ аналогов разработанного покрытия, а также многочисленные лабораторные исследования, которые позволили решить задачу получения атмосферостойкой огнезащитной композиции с огнезащитной эффективностью 30 мин при толщине слоя 1 мм. Данная композиция получила торговой название «Terma-S».

В настоящую огнезащитную композицию входит (5 масс.): смола эпоксидная – 20,0-37,0; полифосфат аммония – 13,0-33,0; пентаэритрит – 12,0-22,5; меламин – 7,0-19,0; диоксид титана – 0,9-10,0; дибутилфталат – 0,5-3,0; гидроксид алюминия – 1,0-7,0; стеклосферы – 01,-5,0; вспученный графит – 1,0-7,0; разбавитель – 10,0-17,0.

Композиция отличается высокой адгезией к загрунтованному металлу, к большинству типов грунтовок при малой толщине сухого слоя (по сравнению с другими эпоксидными аналогами) благодаря подобранным компонентам с выверенным процентным соотношением, а также отличной атмосферостойкостью и простотой изготовления.

Наиболее близким аналогом разработанной композиции, представленная в заявке RU № 93052300 от 20.07.1996 г. В ней предложен состав краски, образующей теплогидроизолирующее защитное покрытие для трубопроводов. Состав содержит стеклянные микросферы диаметром 200-300 мкм, пластификатор полиизобутилен И-200, отвердитель полиэтиленполиамин, эпоксидное связующее и модифицированное эпоксидное связующее ЭД-20 . Полученное по данному техническому решению покрытие образует композицию с полыми микросферами, заполненными лучшим теплоизолятором – воздухом, что придает защитному покрытию теплоизолирующие свойства. Однако данный состав не обладает огнезащитными свойствами, что ограничивает область его использования.
В заявке CN1680501 (A) представлено изобретение, относящееся к разряду вспучивающихся ультратонких атмосферостойких красок. Краска содержит (% масс.): акриловую смолу – 16-25; смолу с аминогруппами – 5-8; огнезащитную нанокомпозицию – 3-6; огнезащитную добавку – 35-45; спиновое стекло – 4-7; поглотитель дыма – 2-4; хлорпарафин – 2-4; титановые белила рутильной формы – 3-5; пластификатор – 2-4; пеногаситель – 0,3-0,6; ингибитор – 03-0,6; смесевый растворитель – 15-20. Продукт имеет хорошую стойкость к огню, воде, маслу и соли. К недостаткам данной композиции относится наличие хлорсодержащих ингредиентов и смесевого растворителя в количестве до 20%.

В заявке CN101857756 (A) представлено изобретение, относящееся к огнезащитной краске для стальных конструкций. В состав краски входят следующие компоненты (%масс.): композиционная смола – 45-60; меламин – 6-8; пентаэритрит – 6-8; аммония полифосфат – 16-20; расширяемый графит – 4-10; гидроксид магния – 2-5; фосфат цинка – 1-3; борат цинка 1-3; гидроксид алюминия – 2-5; алюминевый полифосфат – 3,5; диоксид титана – 6-9; матирующие агенты – 0,5-0,8; ацетон – 15-20. Краска обеспечивает возможность предотвращения пожаров и защиту от коррозии. Недостатком данного состава является наличие достаточно большого (15-20%) количества легколетучего токсичного растворителя.

Разработанная авторами композиция предназначена для нанесения огнезащитного покрытия на наружные и внутренние строительные стальные конструкции объектов гражданского, промышленного и военного назначения; для обработки конструкций железнодорожного транспорта, мостов и эстакад; для использования на нефтегазохимических и химических предприятиях с высокой степенью риска; для повышения предела огнестойкости при различных сценариях пожара за счет высоких теплоизолирующих свойств пенококса, образующегося при высокотемпературном воздействии на покрытие. Покрытие обладает высокой долговечностью: прогнозируемы сроки эксплуатации - более 25 лет при эксплуатации в умеренно-холодном климате, в атмосфере промышленных газов и паров (сероводород, хлороводород), а также устойчивостью к морской воде и нефтепродуктам.

При анализе известного уровня техники не выявлено технических решений с совокупностью признаков, соответствующих настоящему изобретению и обеспечивающих описанный выше результат. Проведенный анализ свидетельствует о соответствии заявляемого технического решения критериям изобретения «новизна», «изобретательский уровень». Настоящее изобретение может быть промышленно реализовано при использовании известных технологических процессов, оборудования и материалов, предназначенных для изготовления лакокрасочных составов.

На данный момент авторами разработана рецептура предлагаемого покрытия, технология получения его в лабораторных условиях; изготовлено и исследовано покрытие толщиной 1 мм, которое показывает огнезащитную эффективность (согласно ГОСТ Р53295-2009) 30 мин. Данные испытания были проведены испытательным центром СПбФ ФГБУ ВНИИПО МЧС России.

Цель дальнейших исследований заключается в получении покрытия толщиной 40 мм, обладающего огнезащитной эффективностью 120 мин; в разработке технологии изготовления защитного покрытия; в проведении необходимых испытаний в промышленных условиях.

Программа дальнейших исследований состоит в следующем:

  1. создание рецептур на основе эпоксидных смол без использования растворителей при разном соотношении интумесцентной системы и добавок - волластонина, фуллеренов, полых стекло- и керамических сфер т. д.;
  2. проведение исследований в лабораториях, аккредитованных в области исследований огнезащитных покрытий, на получение соответствующих параметров, выявление оптимального соотношения компонентов.

В результате ускоренных климатических испытаний (100 циклов) огнезащитного покрытия согласно ГОСТ 9.401, метод 1 установлено, что покрытие будет сохранять свои защитные свойства в условиях эксплуатации УХЛ4 в течение не менее 25 лет; при этом возможно значительное изменение его цвета. Определена стойкость огнезащитного покрытия к воздействию переменной температуры, повышенной влажности, сернистого газа и солнечного излучения (метод 6). В результате огнезащитное покрытие на эпоксидной основе выдержало 150 циклов испытаний без изменения защитных свойств, что гарантирует сохранение защитных свойств в условиях эксплуатации ХЛ1, УХЛ1 в течение не менее 25 лет.

Поскольку ускоренные климатические испытания не учитывают сохранения огнезащитной эффективности покрытия, определяли кратность вспучивания огнезащитного покрытия на эпоксидной основе до и после ускоренных испытаний при условиях эксплуатации согласно: разница в степени вспучивания составила не более 10%. Следовательно, можно предположить, что в течение всего срока эксплуатации огнезащитная эффективность будет изменена. Данное положение нашло также подтверждение в результате исследований методами термического анализа.

Ожидаемым результатом данной работы является разработка интумесцентного (вспучивающегося)огнезащитного покрытия на эпоксидной основе для конструкции 120 мин при толщине покрытия не более 40 мм, которое можно наносить в условия пониженных температур (до минус 60 о С) и повышенной влажности (100%), а также в условиях промышленной атмосферы при сохранении эксплуатационных и огнезащитных свойств (по данным ускоренных испытаний) не менее 25 лет.

Технические характеристики огнезащитных эпоксидных композиций

Сравнительный анализ технико-экономических характеристик состава «Terma-S» и огнестойких эпоксидных композиций

№ п/п

Параметр

Терма- S

(Россия)

Chartek-8

(AkzoNobel)

Лидер

(Россия)

Внешний вид покрытия и состава, визуальные характеристики

Светло-серый, оттенок не нормируется

Адгезия к стали, балл, не менее

Плотность, г/см 3

1,0…1,2

Степень перетира, мкм

Жизнеспособность, мин:

Время высыхания до степени 3 ч:

Предел прочности покрытия при ударе, см, не менее

Предел прочности покрытия при изгибе, мм, не более

Коэффициент вспучивания, раз, не менее

Стойкость пленкик действию, ч:

Воды при 18-22 о С, не менее

Минерального масла

24

3%-ного раствора NaCI

Область рабочих температур, о С

-60…+120

Срок эксплуатации, лет

Не менее 25

Толщина слоя покрытия для достижения огнезащитной эффективности 30 мин, мм

Эпоксиполиамидная, цинконаполненная, а также глифталевая

Эпоксиполиамидные грунты с толщиной сухой пленки не более 75 мкм.

Цинконаполненный грунт и связующий слой с общей толщиной сухой пленки не более 110 мкм

Наличие армирующей сетки

Расход на 1м 2 для достижения огнезащитной эффективности 30 мин, кг

1,7 (при толщине 1,1 мм)

8,0 (при толщине 8 мм)

Стоимость 1 кг материала, руб.

872,0 (21,8 евро)

*Примечание: Знак "-" означает, что данных нет.

Основные показатели состава Terma-S

Огнезащитное покрытие «Terma-S» имеет следующие основные физические и технические характеристики:

  • Адгезия пленки, балл, не более
    ........................................................................................................................................................................................... 1
  • Время высыхания до степени 3 при 20 о С, ч, не более
    ........................................................................................................................................................................................... 24
  • Огнезащитная эффективность, мин
    ........................................................................................................................................................................................... 30
  • Группа огнезащитной эффективности
    ........................................................................................................................................................................................... 5
  • Сроки эксплуатации, лет не менее
    ........................................................................................................................................................................................... 25

Было проведено сравнение основных технических параметров разработанного продукта «Terma-S» с его ближайшими аналогами - импортной огнезащитной краской Chartek 8 (концерна AkzoNobel) и российской краской «Лидер », поставляемой компанией «ИНФРАХИМ».

Продукты-аналоги уступают разработанному продукту по области рабочих температур, использованию армирующей сетки, срокам эксплуатации (25 лет), а также по техническим параметрам: толщине слоя, обеспечивающей на 30 мин огнезащитную эффективность, и соответствующему расходу материала на 1 м 2 . Кроме того, себестоимость состава «Terma-S» существенно ниже, чем рыночные цены на аналоги, что дает возможность также выставить конкурентную рыночную цену на данный состав.

Разработанное огнезащитное покрытие позволит выполнять работы по повышению пределов огнестойкости строительных конструкций в условиях строящегося строительного объекта в зимний период, по огнезащите конструкций либо реконструкционные работы по восстановлению покрытия в условиях промышленной атмосферы в производственных зданиях и сооружениях.

Огнезащитная краска Лидер является уникальной, так как при достаточно высокой огнезащитной эффективности толщина самого покрытия невелика (1,0 мм) и, кроме того, покрытие может использоваться в условиях эксплуатации УХЛ4,О4, В4, ХЛ1, УХЛ1 в течение 25 лет.

В современном строительстве практически ни одно промышленное здание и сооружение не обходится без использования стальных конструкций. Для повышения фактических пределов их огнестойкости применяются различные средства огнезащиты, которые создают на поверхности теплоизолирующий экран, замедляющий нагревание металла и сохраняющий его функциональные свойства в условиях пожара в течение заданного периода времени.

На сегодняшний день среди всего многообразия способов огнезащиты широкую популярность приобрели вспучивающиеся краски, во многом благодаря декоративности создаваемого покрытия и экономичности производимых работ. Основные принципы построения рецептур огнезащитных вспучивающихся (интумесцентных) красок аналогичны рецептурам лакокрасочных материалов: пленкообразователь, наполнители, пигменты (если необходимо), реологические ингредиенты, сиккативы (отвердители), если покрытие отверждаемого типа. Главное отличие заключено в наличии интумесцентной системы, отвечающей за процесс образования пенококса.

В общем случае интумесцентая система состоит из трех основных компонентов: пенообразователь − вещество, разлагающееся с образованием паров или газов; вещество, образующее скелет пенококса – углеводородную структуру, которая формируется газообразователем; неорганические кислоты или вещества, выделяющие кислоту, являющуюся катализатором коксообразования (фосфорная кислота, ее эфиры и соли, соли аммония, меламинфосфат и полифосфат аммония).

Для вспучивающихся покрытий применяют специальные компоненты, подразделяемые на четыре группы:
полиолы – органические гидроксилсодержащие соединения с большим содержанием углерода (пентаэритрит, ди-, трипентаэритрит, крахмал, декстрин и др.);
неорганические кислоты или вещества, выделяющие кислоту при 100 − 250 ºС (фосфорная кислота, ее эфиры и соли, соли аммония, меламинфосфат и полифосфат аммония);
амиды или амины (мочевина, дициандиамид, гуанидин и др.);
галогенсодержащие соединения, чаще всего хлорпарафины с 70%-м содержанием хлора.

Известно, что при введении минеральных наполнителей уменьшается относительное содержание горючей составляющей покрытия, изменяются его теплофизические характеристики, а также условия тепло- и массообмена при горении. Такое действие оказывают практически все инертные, заметно не разлагающиеся при температуре пламени минеральные пигменты и наполнители, из которых наибольшее применение получили технический углерод, диоксид титана, оксид кремния, каолин, тальк, слюда, графит, керамзит.

Кроме того, ряд наполнителей (гидроксид алюминия Аl (OH)3 6H2O, оксалаты, карбонаты металлов, борная кислота и ее соли, фосфаты, содержащие кристаллизационную воду) также проявляет свойства антипиренов. Огнезадерживающее действие наполнителей-антипиренов обусловлено выделением паров воды при разложении в пламени. В некоторых случаях происходит образование оксидной пленки на горящей поверхности, выделение газов, не поддерживающих горение.

Очень часто используются галогенсодержащие антипирены, их доля в общем выпуске составляет почти 25%. В качестве добавок к полиолефинам применяют хлорпарафины, которые хорошо совмещаются с полимером, они достаточно эффективны, однако могут выпотевать; гексахлорциклопентадиен, его димеры и аддукты с бутадиеном, дивинилбензолом, циклооктадиеном, дивинилбензолом или малеиновым ангидридом; броморганические циклоалифатические соединения – гексабромциклододекан, тетрабромциклооктан и др. Если сравнивать эффективность различных галогенов в их смесях с оксидом сурьмы (Sb2O3), то бром проявляет наибольший эффект. Так, при одновременном присутствии в системе хлора и брома преимущественно образуются бромиды сурьмы, а хлор выделяется в виде хлороводорода.

Широко известны неорганические и органические соединения фосфора. В настоящее время только эфиры фосфорных кислот составляют более 15% всех антипиренов-добавок. Также существенное значение имеют реакционноспособные фосфорсодержащие антипирены, например, фосфорсодержащие полиолы. Введение фосфорсодержащих фрагментов в системы покрытий не только снижает их горючесть, но и повышает адгезию, противокоррозионную стойкость и улучшает важные свойства. Добавки на основе фосфора единственные препятствуют тлению − фосфорсодержащие антипирены действуют на начальных стадиях процесса горения, предотвращая разогрев и вызывая дегидратацию полимера, ускоряя его коксование, поэтому они больше подходят для зоны пиролиза.

В настоящее время наметилась тенденция к использованию для огнезащиты безгалогенных материалов на основе меламина (например, меламинцианурат), кроме того, минимизируются добавки оксидов сурьмы. Требования к таким веществам следующие: они не должны подвергаться коррозии ни в течение переработки, ни в случае пожара; выделять при сгорании минимальное количество дымогазовой смеси; по возможности исключать возникновение диоксинов. Применительно к этим веществам должна быть указана термостабильность, т. е. температура, при которой возникают первые признаки разложения. Они должны быть нерастворимы в воде и индифферентны к полимерам. Соединения подобного вида очень безопасны, выделяют небольшой объем дыма при пожаре и обладают низкой токсичностью газов сгорания. Меламинамилфосфат также может использоваться в качестве эффективного заменителя оксида сурьмы как огнезащитного вещества в эластичных поливинилхлоридах. При этом существенно уменьшается потребность в количестве вводимого одновременно тригидрата алюминия, что было установлено в испытаниях, проводимых компанией Synthetic Products Inc. В отличие от тригидрата алюминия меламин не проявляет синергизма с галогенами, но хорошо диспергируется в основном веществе, не ухудшая его термостабильности.


В качестве добавок, снижающих пожарную опасность покрытий, в настоящее время начинают применять стеклосферы, полые стеклянные микрошарики, и углеродные нанотрубки. Это достаточно новый, но уже доказавший свою перспективность материал, представляющий собой полые трубки размером от 20 до 30 тысяч нм, состоящие из свернутых слоев углерода.

Выбор полимерного связующего определяется требованиями к физико-химическим, эксплуатационным и огнезащитным свойствам вспучивающихся красок. Для получения лакокрасочных материалов можно использовать пленкообразующие системы различных видов, в том числе водные дисперсии, органодисперсии и 100%-е пленкообразующие системы. Наиболее распространены однофазные пленкообразующие системы, представляющие собой растворы пленкообразующих в органических растворителях.

Стоит отметить, что не бывает полностью универсальных вспенивающихся систем антипиренов со строго определенным соотношением компонентов. Все композиции разрабатываются эмпирически и рассматриваются как одно целое, поэтому при создании вспучивающейся краски всегда стоит задача обоснованного подхода к выбору компонентов.

В качестве катализатора карбонизации во вспенивающихся композициях широко используются различные фосфаты. Большинство из них водорастворимы, и, следовательно, их существенным недостатком является низкая водо- и атмосферостойкость. Поэтому главным критерием при выборе должна стать невысокая растворимость в воде.

С другой стороны, для интенсивного пенококсообразования и обеспечения эффективной огнезащиты необходимо, чтобы процессы, происходящие в покрытии при воздействии на них теплового потока, протекали в строго определенной последовательности, и, если учесть, что она зависит в первую очередь от температуры разложения составляющих компонентов покрытия, следующим критерием является значение температур при начале разложения фосфатов.

Наиболее целесообразно использовать в качестве катализатора фосфат меламина, пирофосфат аммония, полифосфат аммония, так как эти соединения нерастворимы в воде, а температуры их разложения лежат в области температур эффективного разложения выбранных пленкообразователей (100 − 200 ºС). Среди подобных материалов самым доступным считается полифосфат аммония. Рассмотрим его свойства на примере полифосфатов аммония марок JLS (Таблица 1).

Таблица 1. Свойства антипиренов серии полифосфат аммония JLS-APP

Фосфор , %

(m/m)

Азот , %

(m/m)

Р2О5,%

(m/m)

Вязкость,

mPas

Водораство-римость % , (m/m)

Характеристики

JLS — APP

31.0-32.0

14.0-15.0

≤100

≤0.50

кристаллический, фаза II, n>1000

JLS-APP

Special

31.0-32.0

14.0-15.0

≤5

≤0.50

JLS — APP

более мелкие и правильные гранулы, чем JLS — APP

JLS — APP 101

28.0-30.0

17.0-20.0

≤20

≤0.50

дает меньшуювязкость и более стабилен в акриловых системах чем JLS — APP

JLS-APP 101R

28.0-30.0

17.0-20.0

≤20

≤0.50

модифицированный меламином полифосфат аммония, свободный от формальдегида;

мельче, чем JLS — APP 101

лучше диспергируется в пластиках и эластомерах, чем JLS — APP 101

JLS-APP 102

31.0-32.0

14.0-15.0

≤10

≤0.50

обработан силиконом

менее гигроскопичен, чем JLS — APP;

лучше водонепроницаемость по сравнению с JLS — APP

JLS-APP 103

31.0-32.0

14.0-15.0

≤100

≤0.50

лучше диспергируется в полиолах, чем JLS — APP;

лучшая стабильность вязкости в полиолах

JLS-APP 104

29.0-31.0

12.5-14.5

≤10

≤0.20

мультипроцессинговая обработка;

отличная водонепроницаемость;

меньше «мыльность», чем у других марок JLS — APP;

может давать прозрачное покрытие

Основной характеристикой полифосфата аммония для огнезащитного состава является содержание азота и фосфора, которые должны находится в пределах 14 − 15% азота и не менее 70% фосфора соответственно. Более низкое содержание фосфора не позволит достичь нужной высоты (кратности) пены. Полифосфат аммония существует в двух видах: с кристаллической фазой I (степень полимеризации n < 1000) и кристаллической фазой II (n > 1000). Для первого типа характерны линейная структура, более низкая температура разложения и высокая степень водорастворимости, поэтому в производстве красок используется полифосфат фазы II с высокой степенью полимеризации.

Другим важным компонентом огнезащитного вспучивающегося покрытия считается карбонизирующий материал, который в условиях высокотемпературного пиролиза в смеси с катализатором карбонизации способен образовывать устойчивые конденсированные структуры. В качестве такого материала, к примеру, применяют пентаэритрит, ди- и три-пентаэритриты, различные углеводы, аминоформальдегидные олигомеры и др.

Для дополнительного усиления эффективности катализатора карбонизации и карбонизирующего материала в огнезащитные вспучивающиеся материалы добавляют вспенивающие агенты (газообразователи). Последние, благодаря выделению большого количества негорючих газов при терморазложении, способствуют образованию вспененного слоя (Таблица 2).

Согласно представленным данным, целесообразно использовать меламин и дициандиамид. Хлорпарафин же играет роль не только вспенивающего агента, но и карбонизатора. Несмотря на токсичные газообразные продукты, выделяемые в процессе пиролиза, концентрация хлорпарафина варьируется от 2 до 8%, причем этот материал выполняет также функцию пластификатора, например, в рецептурах с акрилстирольными смолами.

Несомненно, в связи с неблагоприятной экологической ситуацией наиболее распространены водно-дисперсионные вспучивающиеся покрытия, производство и применение которых не связано с использованием токсичных и пожароопасных органических веществ. Тем не менее при окраске различных сооружений возникает необходимость в атмосферостойких вспучивающихся ЛКМ, применяемых в условиях повышенной влажности (по мокрым поверхностям), с повышенной морозостойкостью при условиях нанесения в зимний период и возможностью транспортировки в районы с холодным климатом. Кроме того, в процессе строительства краски могут наноситься на конструкции недостроенных объектов без стеновых и крышных панелей, поэтому разработка вспучивающихся огнезащитных покрытий на основе органических растворителей до сих пор остается актуальной.

Таблица 2. Свойства некоторых вспенивающих агентов

Название соединения Растворимость в воде Температура разложения°С Основные продукты разложения
Мочевина растворим
Гуанидин растворим
Бутилмочевина не растворим

NH 3 , H 3 PO 4 , H 2 O, CO 2

Тиомочевина мало растворим

NH 3 , H 3 PO 4 , H 2 O, CO 2

Хлорпарафин не растворим

H 2 O, CO 2, НСl

Дициандиамид не растворим

NH 3 , H 2 O, CO 2

Меламин не растворим

NH 3 , H 2 O, CO 2

Органические растворители, используемые для этих целей, играют большую роль в процессе формирования покрытий, оказывая сильное воздействие на структуру и свойства пленок, полученных из растворов полимеров.

Если до недавних пор подбор оптимального состава растворителей осуществлялся в основном эмпирическим путем, то в последнее время при выборе растворителей руководствуются термодинамическим сродством в системе полимер – растворитель и летучестью растворителя. От сродства компонентов системы зависит скорость растворения пленкообразователя, стабильность и реологические свойства растворов или дисперсий, в определенной степени – структура и свойства покрытий. Летучесть растворителя сказывается на технологических характеристиках лакокрасочных материалов и внешнем виде покрытий, которые также находятся в зависимости от методов нанесения.

В качестве пленкоообразователей для атмосферостойких растворных вспучивающих составов применяют хлосульфированный полиэтилен, пентафталевые лаки, хлорвиниловые, стирол-акриловые полимеры. Наиболее оптимальны для таких связующих системы растворитель-разбавитель, где в качестве растворителя используются ароматические растворители (толуол, ксилол, бутилацетат). Разбавителем выступают сольвент или уайт-спирит. Время высыхания до степени «3» ГОСТ 19007 – 73 при температуре 20 °С таких покрытий составляет, как правило, не более 6 часов.

В целом, для разработки рецептур огнезащитных вспучивающихся красок чаще применяют систему полифосфат аммония – донор фосфорной кислоты, меламин – газообразующий агент, пентаэрит – карбонизатор в начальном соотношении 20:10:10. Практически все производители смол и дисперсий предлагают клиентам базовые рецептуры и описание технологического процесса: растворение смол (если речь идет об органорастворимых красках), затем введение наполнителей, пигментов и реологических добавок. К примеру, такого подхода придерживается компания ELIOKEM для смол марок Pliolite.

Подводя итоги, можно сказать, что все эксперименты по подбору компонентов для вспучивающейся краски показывают, что даже незначительное изменение процентного содержания компонентов оказывает сильнейшее влияние как на огнезащитные, так и на эксплутационные свойства. При разработке такого материла необходимо опираться не только на пленкообразователь, но и на взаимодействие его с компонентами, которые непосредственно отвечают за коксообразование при температурном воздействии.

Марина Викторовна Гравит, к.т.н., зам. генерального директора ООО «НИЦС и ПБ»

КОНСТРУКЦИОННАЯ СТАЛЬ -НЕОБХОДИМОСТЬ ПАССИВНОЙ ЗАЩИТЫ ОТ ОГНЯ

Eliokem, ранее подразделение специальной химии компании Goodyear Tire and Rubber Company, имеет долгую историю работы со своими смолами Pliolite0 и Pliowaye в органоразбавляемых вспучивающихся огнезащитных покрытиях, оригинальная технология была разработана в сотрудничестве с компанией Monsanto, которая изготовила первый коммерческий полифосфат аммония в конце 1960-х/начале 1970-х гг. С тех пор тематика вспучивающихся огнезащитных покрытий остается в центре внимания Eliokem, и наша компания продолжает вкладывать средства в научно-исследовательскую работу и развитие этой темы.

ВСПУЧИВАЮЩИЕСЯ ПОКРЫТИЯ -ФУНКЦИОНАЛЬНЫЕ ПОКРЫТИЯ, КОТОРЫЕ ОБЕСПЕЧИВАЮТ ТЕРМОИЗОЛЯЦИЮ

Функция вспучивающегося покрытия - раздуваться под воздействием тепла в случае пожара, до состояния «безе», которое изолирует сталь от воздействия огняlasix cheap .

В тестах на огнестойкость конструкционной стали используют стандартный режим нагрева, который соответствует IS0834 - температура в печи достигает около 950 "С через 60 минут (рис. 2). Неокрашенная стальная секция, помещенная в печь, будет постепенно нагреваться, отставание температуры стали от температуры печи связанно с теплоемкостью или массивностью стали, которая описывается коэффициентом поперечного сечения Нр/А м-1 (величина, обратная приведенной толщине металла, которая есть отношение площади поперечного сечения металлической конструкции к обогреваемой части ее периметра, обычно используется в РФ). Коэффициент поперечного сечения - это соотношение обогреваемой части периметра металлической конструкции (Нр) к площади ее поперечного сечения (А): более массивная конструкция будет иметь меньшее отношение Нр/А и сможет поглотить большее количество тепла, поэтому для достижения температуры «разрушения» 550°С требуется больше времени. Иными словами, чем большую внутреннюю теплостойкость имеет конструкция (кривые А и В, рис. 2), тем меньшая огнезащита требуется.

Когда стальная конструкция, окрашенная вспучивающимся огнезащитным покрытием, подвергается воздействию высоких температур в тех же условиях, сталь также нагревается, но как только покрытие начинает набухать и создавать защитный изолирующий слой (изгиб на кривой, обозначенный стрелкой), скорость повышения температуры стальной конструкции значительно снижается, и мы видим, что образец покрытия, представленный на рис.2, может сопротивляться достижению критической температуры более 60 минут.

1. Взаимодействие АПФ/ПЭР/МЕЛ

Основные ингредиенты и их взаимодействия были темой обширных исследованийbuy iressa in canada .

Термический анализ бинарных смесей (АПФ/ ПЭР и АПФ/МЕА) и полной трехкомпонентной смеси (АПФ/ПЭР/МЕЛ) позволил развить понимание механизма вспучивания и оптимизировать соотношения в смеси для достижения максимально возможного объема вспененной сажи .

2. Взаимодействие Связующее/АПФ

Основная функция связующего в покрытии - связать вместе все огнезащитные ингредиенты, а также обеспечить их адгезию к подложке для того, чтобы вспучивающие компоненты находились в плотном контакте и могли быстро и правильно выполнить свои важнейшие функции тогда, когда это действительно необходимо - в случае пожара. Кроме того, связующее содействует формированию однородной пористой пенной структуры с того момента, когда расплавленное связующее помогает задерживать газы, выделяемые порофором, тем самым обеспечивая контролируемое вспенивание сажи. Важно, чтобы огнезащитные инигредиенты сохраняли свою реакционную способность неизменной в течение долгого времени, следовательно, связующее должно защищать их (они обычно водовосприимчивы),

обеспечивая необходимую защиту от воды, УФ-излучения, истирания и других воздействийlow dose naltrexone for sale .

Связующее имеет дополнительные функции, такие как контороль реологии покрытия в жидком состоянии, что дает легкость нанесения защитного ЛКМ (обычно это безвоздушное распыление), увеличение толщины пленки без стекания, при этом обеспечивая выравнивание для достижения гладкости покрытия и, также, обеспечение стабильности при хранении, предотвращая оседание в высоконаполненной системе.

Вклад связующего в процесс образования изолирующего слоя был недостаточно понятен, и до последнего времени существовало очень малое количество опубликованных данных на эту тему .

Химическая реакционная способность смол, производимых компанией Eliokem с АПФ была изучена с использованием термогравиметрического анализа (ТГА). На рис. 3 и 4 представлены кривые ТГА (потеря массы как функция от температуры) смол Pliolite® и чисто акриловых смол, АПФ и смесей смола/АПФ. Кроме этого, на графиках представлена теоретическая кривая потери массы смесей смола/АПФ.

Разница между экспериментальной и теоретической кривой ТГА дает информацию о реакционной способности связующего (смолы) с АПФ. Когда экспериментальная кривая находится выше теоретической, тогда потеря массы ниже, чем прогнозировалось, и это значит, что реакционная способность смолы с АПФ приводит к термальной стабилизации компонентов (то есть, взаимное усиление). Если экспериментальная кривая находится ниже теоретической, то реакционная способность смолы с АПФ приводит к термальной дестабилизации компонентов (т.е. антагонизм).

В случае смол Pliolite® (рис. 3) можно увидеть, что существует взаимное усиление свойств смолы с АПФ. Нечто противоположное происходит с чисто акриловой смолой (рис.4), здесь видно четкую иллюстрацию потери термической стабильности в результате взаимодействия между смолой и АПФ.

3. Взаимодействие Связующее /ПЭР или ДИПЭР

Вязкости смесей трех различных смол с ДИПЭР в зависимости от температуры приведены на рис. 6. Результаты для смеси смола/ПЭР сходные, но на 40 °С выше, из-за более высокой температуры плавления ПЭР (260 °С против 222 °С у ДИПЭР).

Из этих графиков (рис. 6) очевидно, что смолы Pliolite® сохраняют высокую вязкость расплава, даже в присутствии ПЭР или ДИПЭР, что позволяет избежать сползания покрытия и обеспечивает хорошую «приклеиваемость», тем самым предотвращая дефекты на ранних стадиях роста огнезащитной пены. В противоположность этому, чисто акриловые смолы демонстрируют значительно большее падение вязкости расплава (примерно в 10 раз) вблизи температуры плавления ДИПЭР или ПЭР, что может быть одной из причин отсутствия успеха чисто акриловых смол в огнезащитных вспучивающихся покрытиях.

4. Взаимодействие диоксид титана/АПФ Возможно, будет неожиданно узнать, что диоксид

титана присутствует в рецептурах вспучивающихся огнезащитных покрытий не только для придания цвета и укрывистости, но и играет важную роль в процессе вспучивания. Очень маленькие по размеру частицы ТiO 2 действуют как зародышеобразователи или точки роста пузырей для огнезащитной пены. Больше того, при температуре около 600 °С ТiO 2 реагирует с АПФ с образованием пирофосфата титана - огнеупорного материала, который стабилизирует изолирующую пену при высоких температурах, когда большая часть углерода окислилась и сгорела с образованием СO 2 . Это можно ясно заметить на фотографии стальной балки после окончания теста на огнестойкость:

Налет на балке не черный, как ожидалось в случае углеродной пены, а белый. Большая часть углерода выгорела, оставив белый, огнестойкий слой пирофосфата титана (фото 5).

ТЮ имеет слабое влияние на изолирующие свойства огнезащитных покрытий, но действует как механический стабилизатор, посредством реакции с АПФ, приводящей к появлению Т 1 Р 2 0 7 (рис. 7).

5. Взаимодействие МЕЛ/ХП Хлорированный парафин уже много десятилетий

используется в рецептурах огнезащитных покрытий. Несмотря на это, его роль до последнего времени была мало изучена .

Используя комбинацию термического анализа, ЯМР- и ИК-спектроскопии, был изучен механизм деградации МЕЛ/ХП. Хлорированный парафин разлагается, образуя С=С-связи в углеродном скелете полимерной цепи. Меламин конденсируется при температуре выше 300 °С с образованием производных циамеллуровой кислоты, таких как мелем. Мелем и полиен реагируют в широком температурном диапазоне с образованием конденсированной гетероа-роматической структуры, которая обладает высокой термостойкостьюvolume pills forum .

6. Добавки

Ряд добавок может быть использован в рецептурах огнезащитных покрытий. Очень важно понимать, что много «обычных» добавок для ЛКМ, например, смачивающие и диспергирующие агенты, загустители, пеногасители, пигменты и т. д. могут иметь сильный негативный эффект на образование теплоизлирую-щей пены. Однако, небольшое количество добавок вводится для обеспечения хорошей стабильности при хранении, улучшения нанесения ЛКМ и, что наиболее важно, улучшения структуры/стабильности углеродной пены для повышения эффективности защиты. Материалы, такие как борат цинка, силоксаны или определенные минералы (например, каолин) часто добавляются для формирования стекловидных или керамических структур при высоких температурах. Например, каолин при достижении температур выше 400 °С подвергается кальцинации или дегидроксили-рованию, и гидратированный алюмосиликат превращается в материал, содержащий преимущественно оксид алюминия и диоксид кремния. Оксид алюминия и диоксид кремния участвуют в усилении пены, обеспечивая более огнестойкую керамическую структуру пены.

7. Значение качества сырья

Качество всех компонентов, используемых в рецептурах огнезащитных покрытий очень важно не только для защитных свойств в начале эксплуатации покрытия, но и для поддержания защитных свойств покрытия с течением времени. Большинство огнезащитных компонентов - довольно чистые химические вещества (например, пентаэритрит, меламин) и большинство из них в некоторой степени восприимчивы к воде. Хорошо известно, что огнезащита, обеспечиваемая покрытием может быть серьезно снижена примесями в таких компонентах и/или воздействием влажности или воды. Примеры такого воздействия описаны ниже.

Стандартная рецептура огнезащитного вспучивающегося покрытия на основе смол Pliolite13 была подготовлена с использованием Европейских сырьевых компонентов (АПФ: Exolite AP422 от Clariant, ПЭР: Charmor® PM40 от Perstorp, и МЕЛ: Melafines от DSM), и сравнивалась с той же рецептурой, изготовленной с использованием азиатских сырьевых компонентов.

Этот пример служит только для иллюстрации. Он не призван быть общим обвинением в низком качестве компонентов, произведенных в Азии. Вполне возможно, что кому-то удастся найти сырье хорошего качества в Азииbuy clomid online 100mg .

Как результат все более конкурентного рынка в Европе, многие европейские производители все больше и больше обращают внимание на Азию, как источник более дешевого сырья для производства более дешевых покрытий. Но требуется очень осторожный подход в выборе и использовании сырьевых компонентов с соответствующими техническими характеристиками.

Было сопоставлено формирование пены двух покрытий (2 недели сушки), при нагреве газовой горелкой, до и после воздействия влажности (12 часов в приборе контролируемой конденсации, согласно ASTM D4585) и до и после погружения в воду на 12 часов. Результаты, демонстрирующие развитие изолирующей пены, приведены на рис. 8: (см. стр. 46)

Можно увидеть, что в случае использования сырья низкого качества имеет место значительное снижение (-48%) высоты углеродной пены, и оно становится еще более очевидным после воздействия влажности (-60%) или воды (-78%).

Снижение толщины углеродной пены имеет прямое влияние на термоизоляцию, а следовательно, на уровень предоставляемой огнезащиты. Таким образом, становится ясно, что необходима повышенная осторожность в выборе сырьевых компонентов для производства эффективных вспучивающихся огнезащитных покрытий.

8. Водоразбавляемые огнезащитные

вспучивающиеся покрытия

Сегодня в сегменте огнезащитных покрытий орга-норазбавляемые вспучивающиеся покрытия все еще доминируют, а водоразбавляемые продукты занимают примерно 35% рынка, в основном из-за присущего им недостатка, связанного со связующими, которые доступны на текущем этапе развития технологии производства водоразбавляемых огнезащитных материалов. Несмотря на то, что органоразбавляемые огнезащитные покрытия соответствуют современным требованиям ЕС по ЛОС, спрос на рынке определенно смещается в сторону высокоэффективных, долговечных водных продуктов, особенно в случаях использования непосредственно на месте монтажа конструкций, где запах растворителя и выбросы ЛОС могут иметь особое значение.

Водоразбавляемые огнезащитные покрытия имеют определенные преимущества не только в плане запаха, но и, особенно, в плане эффективности (меньшие расход и толщина пленки). Однако, они страдают от серьезного недостатка - высокая восприимчивость к воде и влажности воздуха.

Высокая восприимчивость к воде современных водоразбавляемых огнезащитных покрытий может быть проиллюстрирована простым погружением в воду. Менее чем через полчаса покрытие набухло, размягчилось и покрылось пузырями, произошло также значительное снижение огнезащитной эффективности из-за потери покрытием водорастворимых огнезащитных компонентов, что продемонстрированно на фото 7. В противоположность этому органоразбав-ляемое покрытие будет сопротивляться воздействию воды более 5 часов без образования пузырей или потери огнезащитных свойств.

Для обычного человека такое слабое место водоразбавляемых покрытий не кажется существенным, так как большое количество огнезащитных покрытий разрабатывалось &ля эксплуатации в сухих условиях внутри помещений. Однако фото 8, на котором показано возведение здания со стальным каркасом с использованием окрашенных на заводе-изготовителе ячеистых балок, демонстрирует очень важный факт: огнезащитное вспучивающееся покрытие, созданное для эксплуатации внутри помещений все равно должно быть стойким к воздействию погодных условий на протяжении многих месяцев во время возведения здания.

Это очень важно при увеличивающейся практике возведения зданий с использованием окрашенных на заводе-изготовителе конструкций.

9. Выводы

Тонкопленочные огнезащитные вспучивающиеся покрытия освобождают архитекторов и дизайнеров от ограничений, накладываемых использованием традиционных громоздких пассивных систем огнезащиты, и предоставляют им большую свободу самовыражения благодаря использованию стальных металлоконструкций как неотъемлемой части общего дизайна, одновременно давая полную уверенность, что сталь полностью защищена системой, обладающей всеми декоративными свойствами обычной краски.

Фото 6. Водоосновное огнезащитное покрытие после короткого погружения в воду, показывающее пузырение в зоне воздействия воды

Фото 7. После теста на вспучивание водоосновного огнезащитного покрытия, подвергшегося воздействию воды. Хорошо видно снижение эффективности

Тем самым первостепенную важность приобретает уверенность в качестве огнезащитного покрытия и уверенность в том, что результаты теста на огнестойкость и сертификации не могут быть подвержены никакому сомнению.

Технология огнезащитных вспучивающихся покрытий в Европе развивается быстрыми темпами. Все современные тенденции неизбежно устанавливают повышенные требования к характеристикам огнезащитных покрытий - повышенная эффективность, лучшая долговечность без потери защитных свойств.

Сегодня даже при усовершенствовании технологии создания водных материалов только органоразбавляемые огнезащитные покрытия на основе смол Pliolite0 или Pliowayw могут соответствовать новым требованиям рынка.

Смолы Pliolite® и Plioway"5, производимые компанией Eliokem, являются предпочтительным вариантом для создания рецептур органоразбавляемых огнезащитных покрытий для защиты металлоконструкций. Они заслужили такую репутацию благодаря их химическому составу и морфологии полимера, которые идеально подходят для применения в огнезащитных покрытиях. Это подтверждается многолетним успешным использованием смол Pliolite" и Plioway0 по всему миру.

Огнезащитные вспучивающеся покрытия на основе данных смол могут быть изготовлены для применения внутри и снаружи зданий и могут обеспечивать до 2 ч защиты, в зависимости от коэффициента поперечного сечения (приведенной толщины металла), и удовлетворяют требованиям национальных стандартов огнезащиты.

Эти покрытия созданы для сохранения человеческих жизней, и промышленные стандарты производства по всему миру должны гарантировать, что эта жизненно важная функция не скомпрометирована низким качеством огнезащитного покрытия или сомнительной сертификацией.

  • Вперёд >

На сегодняшний день вспучивающиеся покрытия нашли широкое применение. Использование этих покрытий началось ещё в 80-х годах ХХ века. Они являются защитным средством для повышения огнестойкости конструкций и сооружений. Работает это средство следующим образом: когда на поверхность с огнезащитной краской воздействуют высокие температуры, краска начинает вспучиваться и при этом её объём увеличивается в несколько раз. Образуется пористый, термостойкий защитный слой, который не даёт воспламениться огнеопасным материалам.

Огнестойкая краска состоит из полимерных материалов, в которые добавлены связующие антипирены и вспучивающиеся добавки - специальные газообразующие примеси. Применяются такие краски в тех местах, где необходимо защитить от пожара деревянные конструкции или кабели.

Основные технические параметры вспучивающихся покрытий

Существует несколько характеристик, определяющих качество защитного покрытия, но основных параметра всего два. Первый - это адгезия (способность скрепления краски со старым покрытием), второй - эффективность теплозащиты. Второй параметр состоит из целого комплекса показателей, таких как теплопроводность, температуропроводность и т.д. Кроме основных, существуют ещё и такие параметры покрытия:

  • время высыхания краски;
  • твёрдость и эластичность;
  • устойчивость цвета и т.д.

Чаще всего огнезащитные краски имеют белый цвет, но иногда заказчик желает цвет изменить на какой либо иной, более яркий. Однако это не всегда возможно, так как такие краски содержат много двуокиси титана (до 20%), который препятствует значительной колеровке. Поэтому эти покрытия могут иметь только светлые оттенки.

Современные огнезащитные краски способны сохранять свои свойства в течение 5 - 10 лет, при условии соблюдения всех инструкций.

Какие факторы снижают надёжность покрытий

Во-первых, больше всего на надёжность покрытия влияют условия его эксплуатации. Если огнезащитное покрытие не предназначено для низких температур, а оно применяется в зимний период или же в случае применения гидрофобных покрытий в условиях повышенной влажности, то это приводит к снижению эффективности от 50 до 100% в течение месяца. Также сильно влияет наличие блуждающих электротоков. Этот фактор снижает адгезия краски и в итоге надёжность покрытия. Сильно влияет на надёжность краски наличие в воздухе агрессивных химических реагентов, таких как, например сернистый газ или же повышенное воздействие солнечных лучей, влаги и т.д.

В итоге, при планировании состава огнезащитного покрытия нужно учитывать все факторы, снижающие его огнезащитные свойства. Это низкие температуры, влажность, химические пары, воздействие солнца и т.д.

Испытания огнезащитных покрытий проводятся как обычными методами, применяемыми для испытания всех красок, так и специальными, предназначенными именно для огнезащитных покрытий. К таким специфическим методикам относятся испытания теплопроводности, степени вспучивания краски, рентгенофазный анализ, термические анализы и многие другие.

Аккредитованная лаборатория из г. Санкт-Петербурга «МНИЦСиПБ» давно занимается исследованиями огнезащитных покрытий. Специалисты этой лаборатории утверждают, что главными факторами, влияющими на эффективность огнестойкой краски, являются характеристики пор в покрытии, т.е. их размер и плотность пенококса, а так же потеря массы покрытия и скорость этой потери при определённых экстремальных температурах в диапазоне 100 - 600°С. По сведениям этой лаборатории, если кратность вспучивания покрытия находится в диапазоне 40 - 50 мм, такое покрытие будет надёжным и долговечным. При этих условиях поры в покрытии должны быть малого размера и распределяться по всей поверхности с такой плотностью: поры размером до 1 мм не должны превышать 30 %, а поры размером до 2 мм не должны превышать 3% от общего числа. Что касается потери массы, то при испытании образца покрытия и последующем термогравиметрическом анализе она не должна составлять менее 45% при температурах до 600°С.

Все теоретические исследования, которые проводятся на этапе проектирования покрытия, помогают подобрать нужный химический состав для покрытия, а также помогают выполнить огневые испытания, подобрать нужный компонент для вспучивания краски.

Сегодня в аккредитованной лаборатории ООО «МНИЦС и ПБ» проводятся научные исследования в сфере прогноза срока эксплуатации защитных покрытий в зависимости от состава краски, наличия и количества примесей в ней, от температуры, влажности и других характеристик при эксплуатации покрытия.

Главный вывод, который делают специалисты - все вспучивающиеся огнезащитные покрытия требуют повышенного внимания к соблюдению всех правил хранения, нанесения на поверхности и эксплуатации. При соблюдении всех рекомендаций такие покрытия будут служить долго и надёжно.