Внутреннее строение и физические свойства земли. Из чего состоит наша планета: строение Земли в разрезе

Весьма загадочными и практически недоступными являются недра Земли. К сожалению еще не существует такого аппарата, с помощью которого можно проникнуть и изучить внутреннее строение Земли. Исследователями установлено, что на данный момент самая глубокая шахта в мире имеет глубину в 4 км, а самая глубокая скважина находится на Кольском полуострове и составляет 12 км.

Однако определенные знания о глубинах нашей планеты все-таки установлены. Ученые изучили ее внутреннее строение с помощью сейсмического метода. Основой данного метода, является измерение колебаний во время землетрясения или искусственных взрывов производимых в недрах Земли. Вещества с разной плотностью и составом, пропускали через себя колебания с определенной скоростью. Что позволило с помощью специальных приборов измерить эту скорость и проанализировать полученные результаты.

Мнение ученых

Исследователями было установлено, что наша планета имеет несколько оболочек: земную кору, мантию и ядро. Ученые считают, что примерно 4,6 млрд. лет назад началось расслоение недр Земли и продолжает расслаиваться, по сей день. По их мнению, все тяжелые вещества спускаются к центру Земли, присоединяясь к ядру планеты, а более легкие вещества поднимаются вверх и становятся земной корой. Когда внутреннее расслоение закончится, наша планета превратиться в холодную и мертвую.

Земная кора

Является самой тонкой оболочкой планеты. Ее доля составляет 1% от общей массы Земли. На поверхности земной коры обитают люди и добывают из нее все необходимое для выживания. В земной коре, во многих местах, имеются шахты и скважины. Ее состав и строение изучается с помощью образцов собранных с поверхности.

Мантия

Представляет собой самую обширную оболочку земли. Ее объем, и масса составляет 70 – 80% всей планеты. Мантия состоит из твердого вещества, но менее плотного, чем вещество ядра. Чем глубже располагается мантия, тем больше становиться ее температура и давление. Мантия имеет частично расплавленный слой. С помощью этого слоя твердые вещества перемещаются к ядру земли.

Ядро

Является центром земли. Оно имеет очень высокую температуру (3000 – 4000 о С) и давление. Состоит ядро из самых плотных и тяжелых веществ. Оно составляет приблизительно 30% от общей массы. Твердая часть ядра плавает в его жидком слое, создавая тем самым магнитное поле земли. Оно является защитником жизни на планете, оберегая ее от космических лучей.

Научно-популярный фильм о формировании нашего мира

· ·

Внутреннее строение Земли

Земля на ранних этапах формирования представляла собой холодное космическое тело, содержащее все известные в природе химические элементы. Атмосферы и гидросферы не существовало, поверхность планеты была совершенно безжизненна. Но постепенно за счет гравитационных сил, энергии распада радиоактивных элементов и лунных приливов недра Земли стали разогреваться. Когда температура недр достигла уровня плавления окислов железа и других соединений, начались активные процессы формирования ядра и основных оболочек планеты.

Общим процессом формирования оболочек Земли, согласно гипотезе академика А.П. Виноградова, было зонное плавление в мантии, располагающейся вокруг ядра. При этом тугоплавкие и тяжелые элементы погружались вниз, образуя и наращивая ядро, а легкоплавкие и легкие по массе элементы поднимались вверх, образуя земную кору и литосферу.

Земля имеет оболочечное строение. Установить внутреннее строение Земли удалось сейсмическим методом исследования. При прохождении сквозь тело Земли сейсмических волн (продольных и поперечных) скорости их на некоторых глубинных уровнях заметно меняются (причем скачкообразно), что свидетельствует об изменении свойств среды, проходимой волнами. Продольные волны связаны с напряжениями растяжения (или сжатия), ориентированными по направлению их распространения; поперечные волны вызывают колебания среды, ориентированные под прямым углом к направлению их распространения (в жидкой среде не распространяются).

Земная кора – первая оболочка твердого тела Земли, имеет мощность 30–40 км. По объему она составляет 1,2 % объема Земли, по массе – 0,4%, средняя плотность равна 2,7 г/см 3 . Состоит преимущественно из гранитов, осадочные породы в ней имеют подчиненное значение. Гранитная оболочка, в составе которой огромную роль играют кремний и алюминий, называется «сиалической» («сиаль»). От мантии земная кора отделена сейсмическим разделом, названным границей Мохо , по фамилии сербского геофизика А. Мохоровичича (1857–1936). Здесь происходит скачок скоростей продольных сейсмичеких волн примерно до 8 км/с (рис. 4). Эта граница четкая и наблюдается во всех местах Земли на глубинах от 5 до 90 км. Раздел Мохо не является просто границей между породами различного типа, а представляет собой плоскость фазового перехода между эклогитами и габбро мантии и базальтами земной коры. При переходе из мантии в кору давление падает, габбро переходят в базальты (кремний + магний – «сима»). Переход сопровождается увеличением объема на 15 % и, соответственно, уменьшением плотности. Поверхность Мохо считают нижней границей земной коры. Важная особенность этой поверхности состоит в том, что она в общих чертах представляет собой как бы зеркальное отражение рельефа земной поверхности: под океанами она выше, под континентальными равнинами ниже, под наиболее высокими горами опускается ниже всего (это так называемые корни гор).

Мантия по объему составляет 83 % объема Земли и 68 % ее массы. Предполагается, что она сложена расплавленной силикатной массой, насыщенной газами. Скорости распространения продольных и поперечных волн в нижней части мантии возрастают, соответственно, до 13 и 7 км/с (см. рис.4). Плотность вещества возрастает до 5,7 г/см 3 . На границе с ядром температура увеличивается до 3800º С, давление – до 1,4·10 11 Па. Выделяют верхнюю мантию до глубины 900 км и нижнюю – до 2900 км. В верхней мантии на глубине 150–200 км присутствует астеносферный слой. Астеносфера (греч. asthenes – слабый) – слой пониженной твердости и прочности в верхней мантии Земли. Астеносфера – основной источник магмы, в ней располагаются очаги питания вулканов и происходит перемещение литосферных плит.

Ядро занимает 16 % объема и 31 % массы планеты. Температура в нем достигает 5000 0 С, давление – 37 х 10 11 Па, плотность – 16 г/см 3 . Ядро делится на внешнее (до глубины 5100 км), находящееся в жидком состоянии, и внутреннее – твердое. Во внешнем ядре скорость распространения продольных волн падает до 8 км/с, а поперечные волны не распространяются вовсе, что принимается за доказательство его жидкого состояния. Глубже 5100 км скорость распространения продольных волн возрастает и вновь проходят поперечные волны (см. рис. 4). Внешнее ядро состоит из железа или металлизованных силикатов, внутреннее – железоникелевое. В ядре Земли происходит металлизация вещества, обусловливая образование электрических токов и магнитосферы.

Земной магнетизм

Вокруг Земли существуют разнообразные поля, наиболее существенное влияние на ГО оказывают гравитационное и магнитное.

Гравитационное поле на Земле – это поле силы тяжести. Сила тяжести – равнодействующая сила между силой притяжения и центробежной силой, возникающей при вращении Земли. Центробежная сила достигает максимума на экваторе, но и здесь она мала и составляет 1/288 от силы тяжести. Сила тяжести на земле в основном зависит от силы притяжения, на которую оказывает влияние распределение масс внутри Земли и на поверхности. Сила тяжести действует повсеместно на земле и направлена по отвесу к поверхности геоида. Напряженность гравитационного поля равномерно уменьшается от полюсов к экватору (на экваторе больше центробежная сила), от поверхности вверх (на высоте 36 000 км равна нулю) и от поверхности вниз (в центре Земли сила тяжести равна нулю).

Нормальным гравитационным полем Земли называется такое поле, которое было бы у Земли, если бы она имела форму эллипсоида с равномерным распределением масс. Напряженность реального поля в конкретной точке отличается от нормального, возникает аномалия гравитационного поля. Аномалии могут быть положительными и отрицательными: горные хребты создают дополнительную массу и должны вызывать положительные аномалии, океанические впадины, наоборот – отрицательные. Но на самом деле земная кора находится в изостатическом равновесии.

Изостазия (от греч. isostasios – равный по весу) – уравновешивание твердой, относительно легкой земной коры более тяжелой верхней мантией. Теория равновесия была выдвинута в 1855 г. английским ученым Г.Б. Эйри. Благодаря изостазии избытку масс выше теоретического уровня равновесия соответствует недостаток их внизу. Это выражается в том, что на определенной глубине (100–150 км) в слое астеносферы вещество перетекает в те места, где имеется недостаток масс на поверхности. Только под молодыми горами, где еще полностью компенсация не произошла, наблюдаются слабые положительные аномалии. Однако равновесие непрерывно нарушается: в океанах происходит отложение наносов, под их тяжестью дно океанов прогибается. С другой стороны, горы разрушаются, высота их уменьшается, значит, уменьшается и масса.

Гравитационное поле Земли для ее природы имеет чрезвычайно важное значение:

1. Сила тяжести создает фигуру Земли, она является одной из ведущих эндогенных сил. Благодаря ей, выпадают атмосферные осадки, текут реки, формируются горизонты подземных вод, наблюдаются склоновые процессы. Давление масс вещества, реализующееся в процессе гравитационной дифференциации в нижней мантии, наряду с радиоактивным распадом порождает тепловую энергию – источник внутренних (эндогенных) процессов, перестраивающих литосферу.

2. Земное тяготение уплотнило внутреннее вещество Земли и, независимо от его химического состава, сформировало плотное ядро.

3. Главным в истории планеты с геофизической точки зрения является процесс гравитационной дифференциации вещества – расслоение в соответствии с его плотностью в поле силы тяжести. В результате такого расслоения возникли геосферы, каждая из которых сложена веществом одного агрегатного состояния и сходной плотности.

4. Сила тяжести удерживает газовую и водную оболочки планеты. Атмосферу планеты покидают только самые легкие молекулы водорода и гелия.

5. Сила тяжести обуславливает стремление земной коры к изостатическому равновесию. Силой тяжести объясняется максимальная высота гор; считается, что на нашей Земле не может быть гор выше 9 км.

6. Астеносфера – размягченный теплом слой, допускающий движение литосферы, тоже функция силы тяжести, поскольку расплавление вещества происходит при благоприятном соотношении количества тепла и величины сжатия (давления).

7. Шаровая фигура гравитационного поля определяет два основных вида форм рельефа на земной поверхности – конические и равнинные, которые соответствуют двум универсальным формам симметрии – конической и билатеральной.

8. Направление силы тяжести к центру Земли, помогает животным удерживать вертикальное положение.

Тепловой режим поверхностного слоя земной коры (в среднем до 30 м) имеет температуру, определяемую солнечным теплом. Это гелиометрический слой , испытывающий сезонные колебания температуры. Ниже – еще более тонкий горизонт постоянной температуры (около 20 м), соответствующий среднегодовой температуре места наблюдения. Ниже постоянного слоя температура с глубиной нарастает – геотермический слой . Для количественного определения величины этого нарастания двумя взаимно связанными понятиями. Изменение температуры при углублении в землю на 100 м называется геотермическим градиентом . Его величина колеблется от 0,1 до 0,01º С/м и зависит от состава горных пород, условий их залегания. Расстояние по отвесу, на которое необходимо углубиться, чтобы получить повышение температуры на 1º, называется геотермической ступенью (колеблется от 10 до 100 м/ºС).

Земной магнетизм – свойство Земли, обусловливающее существование вокруг нее магнитного поля, вызванного процессами, происходящими на границе ядро – мантия. Впервые о том, что Земля – магнит, человечество узнало благодаря работам У. Гильберта.

Магнитосфера – область околоземного пространства, заполненная заряженными частицами, движущимися в магнитном поле Земли. Она отделена от межпланетного пространства магнитопаузой. Это внешняя граница магнитосферы. В основе образования магнитного поля лежат внутренние и внешние причины. Постоянное магнитное поле образуется благодаря электрическим токам, возникающим во внешнем ядре планеты. Солнечные корпускулярные потоки образуют переменное магнитное поле Земли. Наглядное представление о состоянии магнитного поля Земли дают магнитные карты. Магнитные карты составляются на пятилетний срок – магнитную эпоху.

Нормальное магнитное поле было бы у Земли, будь она однородно намагниченным шаром. Земля в первом приближении представляет собой магнитный диполь – стержень, концы которого имеют противоположные магнитные полюса. Места пересечения магнитной оси диполя с земной поверхностью называются геомагнитными полюсами . Геомагнитные полюса не совпадают с географическими и медленно движутся со скоростью 7–8 км/год. Отклонения реального магнитного поля от нормального (теоретически рассчитанного) называются магнитными аномалиями. Они могут быть мировыми (Восточно-Сибирский овал), региональными (КМА) и локальными, связанными с близким залеганием к поверхности магнитных пород.

Магнитное поле характеризуется тремя величинами: магнитным склонением, магнитным наклонением и напряженностью. Магнитное склонение – угол между географическим меридианом и направлением магнитной стрелки. Склонение бывает восточным (+), если северный конец стрелки компаса отклоняется к востоку от географического меридиана, и западным (–), когда стрелка отклоняется к западу. Магнитное наклонение – угол между горизонтальной плоскостью и направлением магнитной стрелки, подвешенной на горизонтальной оси. Наклонение положительное, когда северный конец стрелки смотрит вниз, и отрицательное, если северный конец направлен вверх. Магнитное наклонение изменяется от 0 до 90º. Сила магнитного поля характеризуется напряженностью. Напряженность магнитного поля небольшая составляет на экваторе 20–28 А/м, на полюсе – 48–56 А/м.

Магнитосфера имеет каплевидную форму (рис. 5). На стороне, обращенной к Солнцу, ее радиус равен 10 радиусам Земли, на ночной стороне под влиянием «солнечного ветра» увеличивается до 100 радиусов.

Рис.5. Каплевидная форма магнитосферы Земли

Форма обусловлена воздействием солнечного ветра, который, наталкиваясь на магнитосферу Земли, обтекает ее. Заряженные частицы, достигая магнитосферы, начинают двигаться по магнитным силовым линиям и образуют радиационные пояса. Внутренний радиационный пояс состоит из протонов, имеет максимальную концентрацию на высоте 3500 км над экватором. Внешний пояс образован электронами, простирается до 10 радиусов. У магнитных полюсов высота радиационных поясов уменьшается, здесь возникают области, в которых заряженные частицы вторгаются в атмосферу, ионизируя газы атмосферы и вызывая полярные сияния.

Географическое значение магнитосферы очень велико: она защищает Землю от корпускулярного солнечного и космического излучения. С магнитными аномалиями связан поиск полезных ископаемых. Магнитные силовые линии помогают ориентироваться в пространстве туристам, кораблям.

С незапамятных времен люди пытались изображать схемы внутреннего строения Земли. Их интересовали недра Земли как кладовые запасов воды, огня, воздуха, а также, как источник сказочных богатств. Отсюда - стремление проникнуть мыслью в глубины Земли, куда, по выражению Ломоносова,

рукам и оку возбраняет натура (т. е. природа).

Первая схема внутреннего строения Земли

Величайший мыслитель древности греческий философ , живший в IV веке до нашей эры (384-322), учил, что внутри Земли находится «центральный огонь», который вырывается наружу из «огнедышащих гор». Он полагал, что воды океанов, просачиваясь в глубь Земли, заполняют пустоты, потом по трещинам вода снова поднимается вверх, образует ключи и реки, которые впадают в моря и океаны. Так совершается круговорот воды.

Первая схема строения Земли Афанасия Кирхера (по гравюре 1664г.)

С той поры прошло более двух тысяч лет, и только во второй половине XVII века - в 1664 г появилась первая схема внутреннего строения Земли . Ее автором был Афанасий Кирхер . Она была далеко не совершенна, зато вполне благочестива, как это нетрудно заключить, взглянув на рисунок.

Земля изображалась твердым телом, внутри которого огромные пустоты соединялись между собой и поверхностью многочисленными каналами. Центральное ядро заполнялось огнем, а пустоты, что ближе к поверхности,- и огнем, и водой, и воздухом.

Составитель схемы был убежден, что внутри Земли очаги огня согревали ее и производили металлы. Материалом для подземного огня, по его представлениям, служили не только сера и каменный уголь, но также и другие минеральные вещества недр земных. Подземные потоки воды порождали ветры.

Вторая схема внутреннего строения Земли

В первой половине XVIII века появилась вторая схема внутреннего строения Земли . Ее автором был Вудворт . Внутри Земля заполнялась уже не огнем, а водой; вода создавала обширную водяную сферу, а каналы соединяли эту сферу с морями и океанами. Мощная твердая оболочка, состоящая из пластов горных пород, окружала жидкое ядро.


Вторая схема строения Земли Вудворта (по гравюре 1735 г.)

Пласты горных пород

О том, как образуются и располагаются пласты горных пород , впервые указал выдающийся исследователь природы датчанин Николай Стенсен (1638-1687). Ученый долго жил во Флоренции под именем Стено, занимаясь там врачебной практикой.

Горняки давно уже замечали закономерное расположение пластов осадочных пород. Стенсен не только правильно объяснил причину их образования, но и дальнейшие изменения, которым они подвергались.

Эти пласты, по его заключению, осели из воды. Первоначально осадки были мягкими, потом затвердели; сперва пласты залегали горизонтально, затем, под влиянием вулканических процессов, испытали значительные перемещения, чем и объясняется наклон их.

Но то, что было правильным по отношению к осадочным породам, нельзя, конечно, распространять на все прочие породы, слагающие земную кору. Как же они образовались? Из водных ли растворов или из огненных расплавов? Этот вопрос надолго, вплоть до 20-х годов XIX столетия, приковывал к себе внимание ученых.

Спор между нептунистами и плутонистами

Между сторонниками воды - нептунистами (Нептун - древнеримский бог морей) и сторонниками огня - плутонистами (Плутон - древнегреческий бог подземного царства) неоднократно возникали горячие споры.

Наконец, исследователи доказали вулканическое происхождение базальтовых пород, и нептунисты вынуждены были признать себя побежденными.

Базальт

Базальт - весьма распространенная вулканическая порода. Она часто выходит на поверхность земли, а на больших глубинах образует надежный фундамент земной коры . Для этой породы - тяжелой, плотной и твердой, темной окраски - характерно столбчатое сложение в виде пяти-шести-угольных отдельностей.

Базальт - прекрасный строительный материал. Он, кроме того, поддается плавке и применяется для производства базальтового литья. Изделия обладают ценными техническими качествами: тугоплавкостью и кислотоупорностью.

Из базальтового литья делаются высоковольтные изоляторы, химические баки, канализационные трубы и т. п. Базальты встречаются в Армении, на Алтае, в Забайкалье других районах.

Базальт отличается от остальных пород большим удельным весом.

Конечно, значительно труднее определить плотность Земли. А это необходимо знать для того, чтобы правильно понять строение земного шара. Первые и при этом достаточно точные определения плотности Земли были сделаны еще двести лет назад.

Плотность принималась в среднем из многих определений равной 5,51 г/см 3 .

Сейсмология

Значительную ясность в представления о внесла наука сейсмология , изучающая природу землетрясений (от древнегреческих слов: «сейсмос» - землетрясение и «логос» - наука).

В этом направлении предстоит еще большая работа. По образному выражению крупнейшего сейсмолога, академика Б. Б. Голицына (1861 -1916),

всякие землетрясения можно уподобить фонарю, который зажигается на короткое время и, освещая нам внутренности Земли, позволяет тем самым рассмотреть то, что там происходит.

С помощью очень чувствительных самопишущих приборов сейсмографов (от уже знакомого нам слова «сейсмос» и «графо» - пишу) выяснилось, что скорость распространения волн землетрясения через земной шар не одинакова: она зависит от плотности веществ, через которые распространяются волны.

Через толщу песчаника, например, они проходят в два с лишним раза медленнее, чем через гранит. Это позволило сделать важные заключения о строении Земли.

Земной шар , по современным научным воззрениям, можно представить в виде трех вложенных друг в друга шаров. Есть такая детская игрушка: цветной деревянный шар, состоящий из двух половинок. Если его раскрыть, внутри оказывается другой цветной шар, в нем - шар еще меньше и так далее.

  • Первый наружный шар в нашем примере - земная кора .
  • Второй - оболочка Земли, или мантия.
  • Третий - внутреннее ядро .

Современная схема внутреннего строения Земли

Толщина стенок у этих «шаров» различна: у наружного - самая тонкая. Тут надо отметить, что земная кора не представляет собой однородного слоя одинаковой толщины. В частности, под территорией Евразии она изменяется в пределах 25-86 километров.

Как определяют сейсмические станции, т. е. станции, изучающие землетрясения, толщина земной коры по линии Владивосток - Иркутск- 23,6 км; между Питером и Свердловском- 31,3 км; Тбилиси и Баку - 42,5 км; Ереваном и Грозным - 50,2 км; Самаркандом и Чимкентом - 86,5 км.

Толщина оболочки Земли, наоборот, весьма внушительна - около 2900 км (в зависимости от толщины земной коры). Оболочка ядра несколько тоньше - 2200 км. Самое же внутреннее ядро имеет радиус в 1200 км. Напомним, что экваториальный радиус Земли - 6378,2 км, а полярный - 6356,9 км.

Вещество Земли на больших глубинах

Что же происходит с веществом Земли , составляющим земной шар, на больших глубинах ?
Общеизвестно, что с глубиной температура увеличивается. В каменноугольных шахтах Англии и в серебряных рудниках Мексики она настолько высока, что невозможно работать, несмотря на всякие технические приспособления: на глубине одного километра - свыше 30° жары!

Число метров, на которое нужно спуститься в глубь Земли, чтобы температура повысилась на 1°, называется геотермической ступенью . В переводе на русский язык - «степень нагревания Земли». (Слово «геотермический» сложено из двух греческих слов: «ге» - земля, а «терме» - жар. что сходно со словом «термометр».)

Величина геотермической ступени выражается в метрах и бывает различна (в пределах между 20-46). В среднем ее принимают в 33 метра. Для Москвы по данным, глубокого бурения геотермический градиент равен 39,3 метра.

Самая глубокая буровая скважины пока не превышает 12000 метров . На глубине свыше 2200 метров в некоторых скважинах уже появляется перегретый пар. Он с успехом используется в промышленности.

Однако, чтобы сделать отсюда правильные выводы, необходимо учесть еще и воздействие давления, которое тоже непрерывно повышается по мере приближения к центру Земли.
На глубине в 1 километр давление под материками достигает 270 атмосфер (под дном океана на той же глубине - 100 атмосфер) , на глубине 5 км - 1350 атмосфер, 50 км - 13 500 атмосфер и т. д. В центральных частях нашей планеты давление превышает 3 миллиона атмосфер!

Естественно, что с глубиной будет изменяться и температура плавления. Если, допустим, базальт плавится в заводских печах при 1155°, то на глубине 100 километров он начнет плавиться только при 1400°.

По предположениям ученых температура на глубине 100 километров равна 1500° и затем, медленно нарастая, только в самых центральных частях планеты достигает 2000-3000°.
Как показывают лабораторные опыты, под влиянием возраcтаюшего давления твердые тела - не только известняк или мрамор но и гранит - приобретают пластичность и обнаруживают все признаки текучести.

Такое состояние вещества характерно для второго шара нашей схемы - оболочки Земли. Очаги расплавленной массы (магма), непосредственно связанные с вулканами, имеют ограниченные размеры.

Ядро Земли

Вещество оболочки ядра Земли вязкое, а в самом ядре, в связи огромным давлением и высокой температурой, оно находится в особом физическом состоянии. Его новые свойства сходны в отношении твердости со свойствами жидких тел, а в отношении электропроводности - со свойствами металлов.

В больших глубинах Земли вещество переходит, как говорят ученые, в металлическую фазу, которую не возможно пока создать в лабораторных условиях.

Химический состав элементов земного шара

Гениальный русский химик Д. И. Менделеев (1834-1907) доказал, что химические элементы представляют стройную систему. Их качества находятся между собой в закономерных отношениях и представляют последовательные ступени единой материи, из которой построен земной шар.

  • По химическому составу земную кору в основном образуют только девять элементов из более ста нам известных. Среди них прежде всего кислород, кремний и алюминий , затем, в меньшем количестве, железо, кальций, натрий, магний, калий и водород . На долю остальных приходится только два процента от общего веса всех перечисленных элементов. Земную кору в зависимости от ее химического состава называли сиаль. Это слово указывало на то, что в земной коре после кислорода преобладает кремний (по-латыни - «силициум», отсюда первый слог - «си») и алюминий (второй слог - «ал», вместе - «сиаль»).
  • В подкорковой оболочке заметно увеличение магния. Поэтому ее и называют сима . Первый слог - «си» от силиция - кремния , а второй - «ма» от магния .
  • Центральная часть земного шара полагали в основном образована из никелистого железа , отсюда ее название - нифе . Первый слог - «ни» указывает на присутствие никеля, а «фе» - железа (по-латыни «феррум»).

Плотность земной коры в среднем равна 2,6 г/см 3 . С глубиной наблюдается постепенное нарастание плотности. В центральных частях ядра она превышает 12г/см 3 , причем отмечаются резкие скачки, особенно на границе оболочки ядра и в самом внутреннем ядре.

Большие труды 0 строении Земли, ее составе и процессах распространения химических элементов в природе оставили нам выдающиеся советские ученые - академик В. И. Вернадский (1863-1945) и его ученик академик А. Е. Ферсман (1883- 1945)-талантливый популяризатор, автор увлекательных книг - «Занимательная минералогия» и «Занимательная геохимия».

Химический анализ метеоритов

Правильность наших представлений о составе внутренних частей Земли подтверждается также химическим анализом метеоритов . В одних метеоритах преобладает железо - они так и называются железными метеоритами , в других - те элементы, которые встречаются в горных породах земной коры, почему они и называются каменными метеоритами .


Каменные метеориты представляют обломки наружных оболочек распавшихся небесных тел, а железные - обломки их внутренних частей. Хотя по внешним признакам каменные метеориты и не похожи на наши горные породы, однако по химическому составу близки к базальтам. Химический анализ железных метеоритов подтверждает наши предположения о природе центрального ядра Земли.

Атмосфера Земли

Наши представления о строении Земли будут далеко не полными, если мы ограничимся только ее недрами: Земля окружена прежде всего воздушной оболочкой - атмосферой (от греческих слов: «атмос»- воздух и «сфайра» - шар).

Та атмосфера, которой была окружена новорожденная планета, содержала в парообразном состоянии воду будущих океанов Земли. Давление этой первичной атмосферы было поэтому выше современного.

По мере охлаждения атмосферы потоки перегретой воды изливались на Землю, давление становилось ниже. Горячие воды создали первичный океан - водную оболочку Земли, иначе гидросферу (от греческого «гидор» - вода), (подробнее: ). Водная оболочка, покрывая большую часть поверхности земного шара (около 71%), образует единый мировой океан.

Исследование глубин океана показало, что очертания его дна меняются. Те данные, которыми мы располагаем в настоящее время о морских глубинах, не могут быть отнесены к первичному океану, так как древнейшие отложения - в большинстве мелководные. Следовательно, в древнейшие эпохи развития нашей планеты преобладали мелкие водоемы, сейчас же мы наблюдаем обратное соотношение.

1. Строение Земли

Земля по своей форме близка к шару и подобна другим планетами Солнечной системы. Для неточных расчетов принимают, что Земля – шар с радиусом, равным 6370 (6371) км. Более точно фигура Земли – трехосный эллипсоид вращения , хотя ее форма не соответствует ни одной правильной геометрической фигуре. Иногда ее называют сфероидом . Считается, что она имеет форму геоида . Эта фигура получается, если провести воображаемую поверхность, которая совпадает с уровнем воды в океанах, под континенты.

Наибольшая глубина (Марианская впадина) – 11521 (11022) м; наибольшая высота (г. Эверест) – 8848 м.

На 70,8 % поверхность занята водами и только 29,2 % - сушей.

Размеры Земли можно охарактеризовать следующими цифрами:

Полярный радиус ~ 6 357 км. Экваториальный радиус ~ 6 378 км.

Сплюснутость - 1/298,3. Окружность по экватору ~ 40 076 км.

Поверхность Земли - 510 млн. км 2 . Объем Земли - 1 083 млрд. км 3 .

Масса Земли - 5,98.10 27 т Плотность – 5,52 см 3 .

Плотность увеличивается с глубиной: на поверхности – 2,66; 500 км – 3,33;. 800 км – 3,76; 1300 км – 5,00; 2500 км – 7,40; 500 км – 10,70; в центре – до 14,00 г/см 3 .

Рис.1. Схема внутреннего строения Земли

Земля состоит из оболочек (геосфер) – внутренних и внешних.

Внутренние геосферы – земная кора, мантия и ядро.

1. Земная кора . Мощность земной коры в различных районах Земного шара неодинакова. Под океанами она изменяется от 4 до 20 км, а под континентами – от 20 до 75 км. В среднем же для океанов ее мощность составляет 7…10 км, для континентов – 37…47 км. Средняя толщина (мощность) составляет всего 33 км. Нижняя граница земной коры определяется резким увеличением скорости распространения сейсмических волн и называется разделом Мохоровичича (юг. сейсмограф), где отмечено скачкообразное увеличение скорости распространения упругих (сейсмических) волн с 6,8 до 8,2 км/с. Синоним – подошва земной коры .

Кора имеет слоистое строение. В ней выделяют три слоя: осадочный (самый верхний), гранитный и базальтовый .

Мощность гранитного слоя увеличивается в молодых горах (Альпы, Кавказ) и достигает 25…30 км. В районах древней складчатости (Урал, Алтай) наблюдается уменьшение мощности гранитного слоя.

Базальтовый слой распространен повсеместно. Чаще базальты встречаются уже на глубине 10 км. В виде отдельных пятен они внедряются в мантию на глубине 70…75 км (Гималаи).

Границу раздела между гранитным и базальтовым слоем называют поверхностью Конрада (австр. геофизикКонрад В.), также характеризующаяся скачкообразным увеличением скорости прохождения сейсмических волн.

Выделяют два типа земной коры: континентальную (трехслойную) и океаническую (двухслойную). Граница между ними не совпадает с границей материков и океанов и проходит по дну океанов на глубинах 2,0…2,5 км.

Континентальный тип коры состоит из осадочного, гранитного и базальтового слоев. Мощность зависит от геологического строения района. На высоко поднятых участках кристаллических пород осадочный слой практически отсутствует. Во впадинах же его мощность достигает иногда 15…20 км.

Океанический тип коры состоит из осадочного и базальтового слоев. Осадочный слой покрывает практически все дно океанов. Мощность его колеблется в пределах сотен и даже тысяч метров. Базальтовый слой распространен также повсеместно под дном океанов. Мощность земной коры в океанических бассейнах неодинаковая: в Тихом океане она составляет 5…6 км, в Атлантическом – 5…7 км, в Северном Ледовитом – 5…12 км, в Индийском – 5…10 км.

Литосфера – каменная оболочка Земли, объединяющая земную кору, подкорковую часть верхней мантии и подстилаемая астеносферой (слой пониженной твердости, прочности и вязкости).

Таблица 1

Характеристика оболочек твердой Земли

Геосфера

Интервал глубин, км

Плотность, г/см 3

от объема, %

Масса, 10 25 т

от массы Земли, %

Земная кора

Раздел Мохоровичича

Внешняя В

Переходный слой С

Раздел Вихерта-Гутенберга

Внешнее Е

Переходный слой F

Внутреннее G

2. Мантия (греч. покрывало, плащ) располагается на глубине 30…2900 км. Ее масса составляет 67,8 % массы Земли и более чем в 2 раза превышает массу ядра и коры, вместе взятых. Объем составляет 82,26 %. Температура поверхности мантии колеблется в интервале 150…1000 °С.

Мантия состоит из двух частей – нижней (слой D) с подошвой ~ 2900 км и верхней (слой B) до глубины 400 км. Нижняя мантия – Mn, Fe, Ni. В ней распространены ультраосновные породы, поэтому оболочку нередко называют перидотитовой или каменной. Верхняя мантия – Si, Mg. Она активна, содержит очаги расплавленных масс. Здесь зарождаются сейсмические и вулканические явления, горообразовательные процессы. Существует и переходной слой Голицына (слой С) на глубине 400…1000 км.

В верхней части мантии, подстилающей литосферу, находится астеносфера . Верхняя граница глубиной около 100 км под материками и около 50 км под дном океана; нижняя – на глубине 250…350 км. Астеносфера играет большую роль в происхождении эндогенных процессов, протекающих в земной коре (магматизм, метаморфизм и т.д.). По поверхности астеносферы происходит перемещение литосферных плит, создающих структуру поверхности нашей планеты.

3. Ядро Земли начинается с глубины 2900 км. Внутреннее ядро – твердое тело, внешнее ядро – жидкость. Масса ядра до 32 % массы Земли, а объем – до 16 %. Земное ядро почти на 90 % состоит из железа с примесью кислорода, серы, углерода и водорода. Радиус внутреннего ядра (слой G), состоящего из железо-никелевого сплава ~ 1200…1250 км, переходный слой (слой F) ~ 300…400 км, радиус внешнего ядра (слой E) ~ 3450…3500 км. Давление - около 3,6 млн. атм., температура - 5000 °С.

В отношении химического состава ядра существуют две точки зрения. Одни исследователи считают, что ядро, подобно железным метеоритам, состоит из Fe и Ni. Другие предполагают, что, аналогично мантии, ядро сложено силикатами Fe и Mg. Причем вещество находится в особом металлизированном состоянии (электронные оболочки частично разрушены).

Внешние геосферы – гидросфера (водная оболочка), биосфера (сфера жизнедеятельности организмов) и атмосфера (газовая оболочка).

Гидросфера покрывает земную поверхность на 70,8 %. Средняя мощность ее около 3,8 км, наибольшая – > 11 км. Образование гидросферы связано с дегазацией воды из мантии Земли. Она находится в тесной взаимосвязи с литосферой, атмосферой и биосферой. Общий объем гидросферы по отношению к объему земного шара не превышает 0,13 %. Более 98 % всех водных ресурсов Земли составляют соленые воды океанов, морей и др. Общий объем пресных вод равен 28,25 млн. км 3 или около 2 % всей гидросферы.

Таблица 2

Объем гидросферы

Части гидросферы

Объем всей воды,

Объем пресной воды, тыс.м 3

Интенсивность водообмена, лет

Мировой океан

Подземные воды

Почвенная влага

Пары атмосферы

Речные воды

Вода в живых организмах (биологическая)

* – вода, подвергаемая активному водообмену

Биосфера (сфера жизнедеятельности организмов) связана с поверхностью Земли. Она находится в постоянном взаимодействии с литосферой, гидросферой и атмосферой.

Атмосфера. Верхней ее границей является высота (3 тыс. км), где плотность почти уравновешивается с плотностью межпланетного пространства. Химически, физически и механически воздействует на литосферу, регулируя распределение тепла и влаги. Атмосфера имеет сложное строение.

От поверхности Земли вверх она подразделяется на тропосферу (до 18 км), стратосферу (до 55 км), мезосферу (до 80 км), термосферу (до 1000 км) и экзосферу (сфера рассеивания). Тропосфера занимает около 80 % общей атмосферы. Ее мощность 8…10 км над полюсами, 16…18 км – над экватором. При средней для Земли годовой температуре + 14 о С на уровне моря у верхней границы тропосферы она падает до – 55 о С. У поверхности Земли наиболее высокая температура достигает 58 о С (в тени), а наиболее низкая падает до – 87 о С. В тропосфере происходят вертикальные и горизонтальные перемещения воздушных масс, во многом определяющие круговорот воды, теплообмен , перенос пылеватых частиц.

Магнитосфера Земли – самая внешняя и протяженная оболочка Земли, представляющая собой околоземное пространство, где напряженность земного электромагнитного поля превышает напряженность внешних электромагнитных полей. Магнитосфера имеет сложную, непостоянную по конфигурации форму и магнитный шлейф. Внешняя граница (магнитопауза) установлена на расстоянии ~ 100…200 тыс. км от Земли, где магнитное поле ослабевает и становится соизмеримой с космическим магнитным полем

Земля относится к планетам земной группы, и, в отличие от газовых гигантов, таких как Юпитер, имеет твёрдую поверхность. Это крупнейшая из четырёх планет земной группы в Солнечной системе , как по размеру, так и по массе. Кроме того, Земля среди этих четырёх планет имеет наибольшие плотность, поверхностную гравитацию и магнитное поле . Это единственная известная планета с активной тектоникой плит.

Недра Земли делятся на слои по химическим и физическим (реологическим) свойствам, но в отличие от других планет земной группы, Земля имеет ярко выраженное внешнее и внутреннее ядро. Наружный слой Земли представляет собой твёрдую оболочку, состоящую главным образом из силикатов. От мантии она отделена границей с резким увеличением скоростей продольных сейсмических волн — поверхностью Мохоровичича. Твёрдая кора и вязкая верхняя часть мантии составляют литосферу. Под литосферой находится астеносфера , слой относительно низкой вязкости, твёрдости и прочности в верхней мантии .

Значительные изменения кристаллической структуры мантии происходят на глубине 410-660 км ниже поверхности, охватывающей переходную зону, которая отделяет верхнюю и нижнюю мантию. Под мантией находится жидкий слой, состоящий из расплавленного железа с примесями никеля, серы и кремния — ядро Земли. Сейсмические измерения показывают, что оно состоит из 2 частей: твёрдого внутреннего ядра с радиусом ~1220 км и жидкого внешнего ядра, с радиусом ~ 2250 км.

Форма

Форма Земли (геоид) близка к сплюснутому эллипсоиду. Расхождение геоида с аппроксимирующим его эллипсоидом достигает 100 метров.

Вращение Земли создаёт экваториальную выпуклость, поэтому экваториальный диаметр на 43 км больше, чем полярный. Высочайшей точкой поверхности Земли является гора Эверест (8848 м над уровнем моря), а глубочайшей — Марианская впадина (10 994 м под уровнем моря). Из-за выпуклости экватора самыми удалёнными точками поверхности от центра Земли являются вершина вулкана Чимборасо в Эквадоре и гора Уаскаран в Перу.

Химический состав

Масса Земли приблизительно равна 5,9736·1024 кг. Общее число атомов, составляющих Землю, ≈ 1,3-1,4·1050. Она состоит в основном из железа (32,1 %), кислорода (30,1 %), кремния (15,1 %), магния (13,9 %), серы (2,9 %), никеля (1,8 %), кальция (1,5 %) и алюминия (1,4 %); на остальные элементы приходится 1,2 %. Из-за сегрегации по массе область ядра, предположительно, состоит из железа (88,8 %), небольшого количества никеля (5,8 %), серы (4,5 %) и около 1 % других элементов. Примечательно, что углерода , являющегося основой жизни, в земной коре всего 0,1 %.


Геохимик Франк Кларк вычислил, что земная кора чуть более, чем на 47 % состоит из кислорода. Наиболее распространённые породообразующие минералы земной коры практически полностью состоят из оксидов ; суммарное содержание хлора, серы и фтора в породах обычно составляет менее 1 %. Основными оксидами являются кремнезём (SiO 2), глинозём (Al 2 O 3), оксид железа (FeO), окись кальция (CaO), окись магния (MgO), оксид калия (K 2 O) и оксид натрия (Na 2 O). Кремнезём служит главным образом кислотной средой, формирует силикаты; природа всех основных вулканических пород связана с ним.

Внутреннее строение

Земля, как и другие планеты земной группы, имеет слоистое внутреннее строение. Она состоит из твёрдых силикатных оболочек (коры, крайне вязкой мантии), и металлического ядра. Внешняя часть ядра жидкая (значительно менее вязкая, чем мантия), а внутренняя — твёрдая.

Внутреннее тепло

Внутренняя теплота планеты обеспечивается сочетанием остаточного тепла, оставшегося от аккреции вещества, которая происходила на начальном этапе формирования Земли (около 20 %) и радиоактивным распадом нестабильных изотопов: калия-40 , урана-238 , урана-235 и тория-232. У трёх из перечисленных изотопов период полураспада составляет более миллиарда лет. В центре планеты, температура, возможно, поднимается до 6000 °С (10,830 °F) (больше, чем на поверхности Солнца), а давление может достигать 360 ГПа (3,6 млн атм). Часть тепловой энергии ядра передаётся к земной коре посредством плюмов. Плюмы приводят к появлению горячих точек и траппов. Поскольку большая часть тепла, производимого Землёй, обеспечивается радиоактивным распадом, то в начале истории Земли, когда запасы короткоживущих изотопов ещё не были истощены, энерговыделение нашей планеты было гораздо больше, чем сейчас.

Больше всего энергии теряется Землёй посредством тектоники плит, подъёма вещества мантии на срединно-океанические хребты. Последним основным типом потерь тепла является теплопотеря сквозь литосферу, причём большее количество теплопотерь таким способом происходит в океане, так как земная кора там гораздо тоньше, чем под континентами.

Литосфера

Атмосфера

Атмосфера (от. др.-греч. ?τμ?ς — пар и σφα?ρα — шар) — газовая оболочка, окружающая планету Земля; состоит из азота и кислорода, со следовыми количествами водяного пара, диоксида углерода и других газов. С момента своего образования она значительно изменилась под влиянием биосферы . Появление оксигенного фотосинтеза 2,4-2,5 млрд лет назад способствовало развитию аэробных организмов, а также насыщению атмосферы кислородом и формированию озонового слоя, который оберегает всё живое от вредных ультрафиолетовых лучей.

Атмосфера определяет погоду на поверхности Земли, защищает планету от космических лучей, и частично — от метеоритных бомбардировок. Она также регулирует основные климатообразующие процессы: круговорот воды в природе, циркуляцию воздушных масс, переносы тепла. Молекулы атмосферных газов могут захватывать тепловую энергию, мешая ей уйти в открытый космос, тем самым повышая температуру планеты. Это явление известно как парниковый эффект. Основными парниковыми газами считаются водяной пар, двуокись углерода, метан и озон. Без этого эффекта теплоизоляции средняя поверхностная температура Земли составила бы от −18 до −23 °C (при том, что в действительности она равна 14,8 °С), и жизнь скорее всего не существовала бы.

В нижней части атмосферы содержится около 80 % общей её массы и 99 % всего водяного пара (1,3-1,5·1013 т), этот слой называется тропосферой . Его толщина неодинакова и зависит от типа климата и сезонных факторов: так, в полярных регионах она составляет около 8-10 км, в умеренном поясе до 10-12 км, а в тропических или экваториальных доходит до 16-18 км. В этом слое атмосферы температура опускается в среднем на 6 °С на каждый километр при движении в высоту. Выше располагается переходный слой — тропопауза, отделяющий тропосферу от стратосферы. Температура здесь находится в пределах 190-220 K.

Стратосфера — слой атмосферы, который расположен на высоте от 10-12 до 55 км (в зависимости от погодных условий и времени года). На него приходится не более 20 % всей массы атмосферы. Для этого слоя характерно понижение температуры до высоты ~25 км, с последующим повышением на границе с мезосферой почти до 0 °С. Эта граница называется стратопаузой и находится на высоте 47-52 км. В стратосфере отмечается наибольшая концентрация озона в атмосфере, который оберегает все живые организмы на Земле от вредного ультрафиолетового излучения Солнца. Интенсивное поглощение солнечного излучения озоновым слоем и вызывает быстрый рост температуры в этой части атмосферы.

Мезосфера расположена на высоте от 50 до 80 км над поверхностью Земли, между стратосферой и термосферой. Она отделена от этих слоёв мезопаузой (80-90 км). Это самое холодное место на Земле, температура здесь опускается до −100 °C. При такой температуре вода, содержащаяся в воздухе, быстро замерзает, иногда формируя серебристые облака. Их можно наблюдать сразу после захода Солнца, но наилучшая видимость создаётся, когда оно находится от 4 до 16° ниже горизонта. В мезосфере сгорает большая часть метеоритов, проникающих в земную атмосферу. С поверхности Земли они наблюдаются как падающие звёзды. На высоте 100 км над уровнем моря находится условная граница между земной атмосферой и космосом — линия Кармана .

В термосфере температура быстро поднимается до 1000 К, это связано с поглощением в ней коротковолнового солнечного излучения. Это самый протяжённый слой атмосферы (80-1000 км). На высоте около 800 км рост температуры прекращается, поскольку воздух здесь очень разрежён и слабо поглощает солнечную радиацию.

Ионосфера включает в себя два последних слоя. Здесь происходит ионизация молекул под действием солнечного ветра и возникают полярные сияния.

Экзосфера — внешняя и очень разреженная часть земной атмосферы. В этом слое частицы способны преодолевать вторую космическую скорость Земли и улетучиваться в космическое пространство. Это вызывает медленный, но устойчивый процесс, называемый диссипацией (рассеянием) атмосферы. В космос ускользают в основном частицы лёгких газов: водорода и гелия. Молекулы водорода, имеющие самую низкую молекулярную массу, могут легче достигать второй космической скорости и утекать в космическое пространство более быстрыми темпами, чем другие газы. Считается, что потеря восстановителей, например водорода, была необходимым условием для возможности устойчивого накопления кислорода в атмосфере. Следовательно, свойство водорода покидать атмосферу Земли, возможно, повлияло на развитие жизни на планете. В настоящее время большая часть водорода, попадающая в атмосферу, преобразуется в воду, не покидая Землю, а потеря водорода происходит в основном от разрушения метана в верхних слоях атмосферы.

Химический состав атмосферы

У поверхности Земли осушенный воздух содержит около 78,08 % азота (по объёму), 20,95 % кислорода, 0,93 % аргона и около 0,03 % углекислого газа. Объемная концентрация компонентов зависит от влажности воздуха — содержания в нём водяного пара, которое колеблется от 0,1 до 1,5 % в зависимости от климата, времени года, местности. Например, при 20 °С и относительной влажности 60 % (средняя влажность комнатного воздуха летом) концентрация кислорода в воздухе составляет 20,64 %. На долю остальных компонентов приходится не более 0,1 %: это водород, метан, оксид углерода, оксиды серы и оксиды азота и другие инертные газы, кроме аргона.

Также в воздухе всегда присутствуют твёрдые частицы (пыль — это частицы органических материалов, пепел, сажа, пыльца растений и др., при низких температурах — кристаллы льда) и капли воды (облака, туман) — аэрозоли. Концентрация твёрдых частиц пыли уменьшается с высотой. В зависимости от времени года, климата и местности концентрация частиц аэрозолей в составе атмосферы изменяется. Выше 200 км основной компонент атмосферы — азот. На высоте свыше 600 км преобладает гелий, а от 2000 км — водород («водородная корона»).

Биосфера

Биосфера (от др.-греч. βιος — жизнь и σφα?ρα — сфера, шар) — это совокупность частей земных оболочек (лито-, гидро- и атмосферы), которая заселена живыми организмами, находится под их воздействием и занята продуктами их жизнедеятельности. Биосфера — оболочка Земли, заселённая живыми организмами и преобразованная ими. Она начала формироваться не ранее, чем 3,8 млрд лет назад, когда на нашей планете стали зарождаться первые организмы. Она включает в себя всю гидросферу, верхнюю часть литосферы и нижнюю часть атмосферы, то есть населяет экосферу. Биосфера представляет собой совокупность всех живых организмов. В ней обитает несколько миллионов видов растений, животных, грибов и микроорганизмов.

Биосфера состоит из экосистем, которые включают в себя сообщества живых организмов (биоценоз), среды их обитания (биотоп), системы связей, осуществляющие обмен веществом и энергией между ними. На суше они разделены главным образом географическими широтами, высотой над уровнем моря и различиями по выпадению осадков. Наземные экосистемы, находящиеся в Арктике или Антарктике, на больших высотах или в крайне засушливых районах, относительно бедны растениями и животными; разнообразие видов достигает пика во влажных тропических лесах экваториального пояса.

Магнитное поле Земли

Магнитное поле Земли в первом приближении представляет собой диполь, полюсы которого расположены рядом с географическими полюсами планеты. Поле формирует магнитосферу, которая отклоняет частицы солнечного ветра. Они накапливаются в радиационных поясах — двух концентрических областях в форме тора вокруг Земли. Около магнитных полюсов эти частицы могут «высыпаться» в атмосферу и приводить к появлению полярных сияний.

Согласно теории «магнитного динамо», поле генерируется в центральной области Земли, где тепло создаёт протекание электрического тока в жидком металлическом ядре. Это в свою очередь приводит к возникновению у Земли магнитного поля. Конвекционные движения в ядре являются хаотичными; магнитные полюсы дрейфуют и периодически меняют свою полярность. Это вызывает инверсии магнитного поля Земли, которые возникают в среднем несколько раз за каждые несколько миллионов лет. Последняя инверсия произошла приблизительно 700 000 лет назад.

Магнитосфера — область пространства вокруг Земли, которая образуется, когда поток заряженных частиц солнечного ветра отклоняется от своей первоначальной траектории под воздействием магнитного поля. На стороне, обращённой к Солнцу, толщина её головной ударной волны составляет около 17 км и расположена она на расстоянии около 90 000 км от Земли. На ночной стороне планеты магнитосфера вытягивается, приобретая длинную цилиндрическую форму.

Когда заряженные частицы высокой энергии сталкиваются с магнитосферой Земли, то появляются радиационные пояса (пояса Ван Аллена). Полярные сияния возникают когда солнечная плазма достигает атмосферы Земли в районе магнитных полюсов.