Квадратные уравнения примеры с решением 8. Решение полных квадратных уравнений. Решение квадратных уравнений с помощью дискриминанта

Класс: 8

Рассмотрим стандартные (изучаемые в школьном курсе математики) и нестандартные приёмы решения квадратных уравнений.

1. Разложение левой части квадратного уравнения на линейные множители.

Рассмотрим примеры:

3) х 2 + 10х – 24 = 0.

6(х 2 + х – х) = 0 | : 6

х 2 + х – х – = 0;

х(х – ) + (х – ) = 0;

х(х – ) (х + ) = 0;

= ; – .

Ответ: ; – .

Для самостоятельной работы:

Решите квадратные уравнения, применяя метод разложения левой части квадратного уравнения на линейные множители.

а) х 2 – х = 0;

г) х 2 – 81 = 0;

ж) х 2 + 6х + 9 = 0;

б) х 2 + 2х = 0;

д) 4х 2 – = 0;

з) х 2 + 4х + 3 = 0;

в) 3х 2 – 3х = 0;

е) х 2 – 4х + 4 = 0;

и) х 2 + 2х – 3 = 0.

а) 0; 1 б) -2; 0 в) 0; 1

2. Метод выделения полного квадрата.

Рассмотрим примеры:

Для самостоятельной работы.

Решите квадратные уравнения, применяя метод выделения полного квадрата.

3. Решение квадратных уравнений по формуле.

ах 2 + вх + с = 0, (а | · 4а

4а 2 х 2 + 4ав + 4ас = 0;

2ах + 2ах·2в + в 2 – в 2 + 4ас = 0;

2 = в 2 – 4ас; = ± ;

Рассмотрим примеры.

Для самостоятельной работы.

Решите квадратные уравнения, применяя формулу х 1,2 =.

4. Решение квадратных уравнений с использованием теоремы Виета (прямой и обратной)

x 2 + px +q = 0 – приведённое квадратное уравнение

по теореме Виета.

Если то уравнение имеет два одинаковых корня по знаку и это зависит от коэффициента .

Если p, то .

Если p, то.

Например:

Если то уравнение имеет два различных по знаку корня, причём больший по модулю корень будет , если p и будет , если p.

Например:

Для самостоятельной работы.

Не решая квадратного уравнения, по обратной теореме Виета определите знаки его корней:

а, б, к, л – различные корни;

в, д, з – отрицательные;

г, е, ж, и, м – положительные;

5. Решение квадратных уравнений методом “переброски”.

Для самостоятельной работы.

Решите квадратные уравнения, применяяметод “переброски”.

6. Решение квадратных уравнений с применением свойств его коэффициентов.

I. ax 2 + bx + c = 0, где a 0

1) Если а + b + с = 0, то х 1 = 1; х 2 =

Доказательство:

ax 2 + bx + c = 0 |: а

х 2 + х + = 0.

По теореме Виета

По условию а + b + с = 0, тогда b = -а – с. Далее получим

Из этого следует, что х 1 =1; х 2 = . Что и требовалось доказать.

2) Если а – b + с = 0 (или b = а +с) , то х 1 = – 1; х 2 = –

Доказательство:

По теореме Виета

По условию а – b + с = 0 , т.е. b = а +с. Далее получим:

Поэтому х 1 = – 1; х 2 = – .

Рассмотрим примеры.

1) 345 х 2 – 137 х – 208 = 0.

а + b + с = 345 – 137 – 208 = 0

х 1 = 1; х 2 = =

2) 132 х 2 – 247 х + 115 = 0.

а + b + с = 132 -247 -115 = 0.

х 1 = 1; х 2 = =

Ответ : 1;

Для самостоятельной работы.

Применяя свойства коэффициентов квадратного уравнения, решите уравнения

II. ax 2 + bx + c = 0, где a 0

х 1,2 = . Пусть b = 2k, т.е. чётное. Тогда получим

х 1,2 = = = =

Рассмотрим пример:

3х 2 – 14х + 16 = 0 .

D 1 = (-7) 2 – 3·16 = 49 – 48 = 1

х 1 = = 2; х 2 =

Ответ : 2;

Для самостоятельной работы.

а) 4х 2 – 36х + 77 = 0

б) 15х 2 – 22х – 37 = 0

в) 4х 2 + 20х + 25 = 0

г) 9х 2 – 12х + 4 = 0

Ответы :

III. x 2 + px + q = 0

х 1,2 = – ± 2 – q

Рассмотрим пример:

х 2 – 14х – 15 = 0

х 1,2 = 7 = 7

х 1 = -1 ; х 2 = 15.

Ответ : -1; 15.

Для самостоятельной работы.

а) х 2 – 8х – 9 = 0

б) х 2 + 6х – 40 = 0

в) х 2 + 18х + 81 = 0

г) х 2 – 56х + 64 = 0

7. Решение квадратного уравнения с помощью графиков.

а) х 2 – 3х – 4 = 0

Ответ: -1; 4

б) х 2 – 2х + 1 = 0

в) х 2 – 2х + 5 = 0

Ответ: нет решений

Для самостоятельной работы.

Решить квадратные уравнения графически:

8. Решение квадратных уравнений с помощью циркуля и линейки.

ax 2 + bx + c = 0,

х 2 + х + = 0.

х 1 и х 2 – корни.

Пусть А(0; 1), С(0;

По теореме о секущих:

ОВ· ОД = ОА · ОС.

Поэтому имеем:

х 1 · х 2 = 1 · ОС;

ОС = х 1 х 2

К(; 0), где = -

F(0; ) = (0; ) = )

1) Построим точку S(-; ) – центр окружности и точку А(0;1).

2) Проведём окружность с радиусом R = SA/

3) Абсциссы точек пересечения этой окружности с осью ох являются корнями исходного квадратного уравнения.

Возможны 3 случая:

1) R > SK (или R > ).

Окружность пересекает ось ох в точке В(х 1 ; 0) и D(х 2 ; 0), где х 1 и х 2 – корни квадратного уравнения ax 2 + bx + c = 0.

2) R = SK (или R = ).

Окружность касается оси ох в тоске В 1 (х 1 ; 0), где х 1 – корень квадратного уравнения

ax 2 + bx + c = 0.

3) R < SK (или R < ).

Окружность не имеет общих точек с осью ох, т.е. нет решений.

1) x 2 – 2x – 3 = 0.

Центр S(-; ),т.е.

х 0 = = – = 1,

у 0 = = = – 1.

(1; – 1) – центр окружности.

Проведём окружность (S; AS), где А(0; 1).

9. Решение квадратных уравнений с помощью номограммы

Для решения используют Четырёхзначные математические таблицы В.М. Брадиса (таблица XXII, стр. 83).

Номограмма позволяет, не решая квадратного уравнения x 2 + px + q = 0, по его коэффициентам определить корни уравнения. Например:

5) z 2 + 4z + 3 = 0.

Оба корня отрицательные. Поэтому сделаем замену: z 1 = – t. Получим новое уравнение:

t 2 – 4t + 3 = 0.

t 1 = 1 ; t 2 = 3

z 1 = – 1 ; z 2 = – 3.

Ответ: – 3; – 1

6) Если коэффициенты p и q выходят за пределы шкалы, то выполняют подстановку z = k · t и решают с помощью номограммы уравнение: z 2 + pz + q = 0.

к 2 t 2 + p· kt + q = 0. |: к 2

к берут с расчётом, чтобы имели место неравенства:

Для самостоятельной работы.

у 2 + 6у – 16 = 0.

у 2 + 6у = 16, |+ 9

у 2 + 6у + 9 = 16 + 9

у 1 = 2, у 2 = -8.

Ответ: -8; 2

Для самостоятельной работы.

Решите геометрически уравнение у 2 – 6у – 16 = 0.

В этом видео уроке рассказывается о том, как решить квадратное уравнение. Решение квадратных уравнений обычно начинают изучать в общеобразовательной школе, 8 класс. Корни квадратного уравнения находят по специальной формуле. Пусть задано квадратное уравнение вида ax2+bx+c=0, где x - неизвестное, a, b и c - коэффициенты, которые являются действительными числами. Для начала, необходимо определить дискриминант по формуле D=b2-4ac. После этого остается вычислить корни квадратного уравнения по известной формуле. Теперь попробуем решить конкретный пример. В качестве исходного уравнения возьмем x2+x-12=0, т.е. коэффициент a=1, b=1, c=-12. По известной формуле можно определить дискриминант. Затем по формуле нахождения корней уравнения вычислим их. В нашем случае, дискриминант будет равен 49. То, что значение дискриминанта является положительным числом, говорит нам о том, что данное квадратное уравнение будет иметь два корня. После несложных вычислений, получаем, что x1=-4, x2=3. Таким образом, мы решили квадратное уравнение, вычислив его корни Видео урок «Решение квадратных уравнений (8 класс). Находим корни по формуле» вы можете смотреть онлайн в любое время совершенно бесплатно. Удачи Вам!

На занятии будет введено понятие квадратного уравнения, рассмотрены его два вида: полное и неполное. Отдельное внимание на уроке будет уделено разновидностям неполных квадратных уравнений, во второй половине занятия будет рассмотрено множество примеров.

Тема: Квадратные уравнения .

Урок: Квадратные уравнения. Основные понятия

Определение. Квадратным уравнением называется уравнение вида

Фиксированные действительные числа, которые задают квадратное уравнение. Эти числа имеют определенные названия:

Старший коэффициент (множитель при );

Второй коэффициент (множитель при );

Свободный член (число без множителя-переменной).

Замечание. Следует понимать, что указанная последовательность записи слагаемых в квадратном уравнении является стандартной, но не обязательной, и в случае их перестановки необходимо уметь определять численные коэффициенты не по их порядковому расположению, а по принадлежности к переменным.

Определение. Выражение носит название квадратный трехчлен .

Пример 1. Задано квадратное уравнение . Его коэффициенты:

Старший коэффициент;

Второй коэффициент (обратите внимание, что коэффициент указывается со знаком передним);

Свободный член.

Определение. Если , то квадратное уравнение называется неприведенным , а если , то квадратное уравнение называется приведенным .

Пример 2. Привести квадратное уравнение . Разделим обе его части на 2: .

Замечание. Как видно из предыдущего примера, делением на старший коэффициент мы не изменили уравнение, но изменили его форму (сделали приведенным), аналогично его можно было и умножить на какое-нибудь ненулевое число. Таким образом, квадратное уравнение задается не единственной тройкой чисел, а говорят, что задается с точностью до ненулевого множества коэффициентов .

Определение. Приведенное квадратное уравнение получают из неприведенного путем деления на старший коэффициент , и оно имеет вид:

.

Приняты следующие обозначения: . Тогда приведенное квадратное уравнение имеет вид:

.

Замечание . В приведенной форме квадратного уравнения видно, что квадратное уравнение можно задать всего двумя числами: .

Пример 2 (продолжение). Укажем коэффициенты, которые задают приведенное квадратное уравнение . , . Эти коэффициенты также указываются с учетом знака. Эти же два числа задают и соответствующее неприведенное квадратное уравнение .

Замечание . Соответствующие неприведенное и приведенное квадратные уравнения являются одинаковыми, т.е. имеют одинаковые наборы корней.

Определение . Некоторые из коэффициентов в неприведенной форме или в приведенной форме квадратного уравнения могут равняться нулю. В таком случае квадратное уравнение называют неполным . Если же все коэффициенты ненулевые, то квадратное уравнение называют полным .

Существует несколько видов неполного квадратного уравнения.

Если решение полного квадратного уравнения мы пока не рассматривали, то решить неполное мы легко сможем уже известными нам методами.

Определение. Решить квадратное уравнение - значит найти все значения переменной (корни уравнения), при которых данное уравнение обращается в верное числовое равенство, или установить, что таких значений нет.

Пример 3. Рассмотрим пример указанного вида неполных квадратных уравнений. Решить уравнение .

Решение. Вынесем общий множитель . Уравнения такого типа мы умеем решать по следующему принципу: произведение равно нулю тогда и только тогда, когда один из множителей равен нулю, а другой при этом значении переменной существует . Таким образом:

Ответ. ; .

Пример 4. Решить уравнение .

Решение. 1 способ. Разложим на множители по формуле разности квадратов

, следовательно, аналогично предыдущему примеру или .

2 способ. Перенесем свободный член вправо и извлечем квадратный корень из обеих частей .

Ответ . .

Пример 5. Решить уравнение .

Решение. Перенесем свободный член вправо , но , т.е. в уравнении неотрицательное число приравнивается к отрицательному, что не имеет смысла ни при каких значениях переменной, следовательно, корней нет.

Ответ. Корней нет.

Пример 6 .Решить уравнение .

Решение . Разделим обе части уравнения на 7: .

Ответ . 0.

Рассмотрим примеры, в которых сначала необходимо привести квадратное уравнение к стандартной форме, а затем уже его решать.

Пример 7 . Решить уравнение .

Решение . Для приведения квадратного уравнения к стандартной форме необходимо перенести все слагаемые в одну сторону, например, в левую и привести подобные.

Получено неполное квадратное уравнение, которое мы уже умеем решать, получаем, что или .

Ответ . .

Пример 8 (текстовая задача) . Произведение двух последовательных натуральных чисел в два раза больше квадрата меньшего из них. Найдите эти числа.

Решение . Текстовые задачи, как правило, решаются по следующему алгоритму.

1) Составление математической модели . На этом этапе необходимо перевести текст задачи на язык математических символов (составить уравнение).

Пусть некое первое натуральное число обозначим неизвестной , тогда следующее за ним (числа последовательные) будет . Меньшее из этих чисел - это число , запишем уравнение по условию задачи:

, где . Математическая модель составлена.

Квадратные уравнения изучают в 8 классе, поэтому ничего сложного здесь нет. Умение решать их совершенно необходимо.

Квадратное уравнение — это уравнение вида ax 2 + bx + c = 0, где коэффициенты a , b и c — произвольные числа, причем a ≠ 0.

Прежде, чем изучать конкретные методы решения, заметим, что все квадратные уравнения можно условно разделить на три класса:

  1. Не имеют корней;
  2. Имеют ровно один корень;
  3. Имеют два различных корня.

В этом состоит важное отличие квадратных уравнений от линейных, где корень всегда существует и единственен. Как определить, сколько корней имеет уравнение? Для этого существует замечательная вещь — дискриминант .

Дискриминант

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Тогда дискриминант — это просто число D = b 2 − 4ac .

Эту формулу надо знать наизусть. Откуда она берется — сейчас неважно. Важно другое: по знаку дискриминанта можно определить, сколько корней имеет квадратное уравнение. А именно:

  1. Если D < 0, корней нет;
  2. Если D = 0, есть ровно один корень;
  3. Если D > 0, корней будет два.

Обратите внимание: дискриминант указывает на количество корней, а вовсе не на их знаки, как почему-то многие считают. Взгляните на примеры — и сами все поймете:

Задача. Сколько корней имеют квадратные уравнения:

  1. x 2 − 8x + 12 = 0;
  2. 5x 2 + 3x + 7 = 0;
  3. x 2 − 6x + 9 = 0.

Выпишем коэффициенты для первого уравнения и найдем дискриминант:
a = 1, b = −8, c = 12;
D = (−8) 2 − 4 · 1 · 12 = 64 − 48 = 16

Итак, дискриминант положительный, поэтому уравнение имеет два различных корня. Аналогично разбираем второе уравнение:
a = 5; b = 3; c = 7;
D = 3 2 − 4 · 5 · 7 = 9 − 140 = −131.

Дискриминант отрицательный, корней нет. Осталось последнее уравнение:
a = 1; b = −6; c = 9;
D = (−6) 2 − 4 · 1 · 9 = 36 − 36 = 0.

Дискриминант равен нулю — корень будет один.

Обратите внимание, что для каждого уравнения были выписаны коэффициенты. Да, это долго, да, это нудно — зато вы не перепутаете коэффициенты и не допустите глупых ошибок. Выбирайте сами: скорость или качество.

Кстати, если «набить руку», через некоторое время уже не потребуется выписывать все коэффициенты. Такие операции вы будете выполнять в голове. Большинство людей начинают делать так где-то после 50-70 решенных уравнений — в общем, не так и много.

Корни квадратного уравнения

Теперь перейдем, собственно, к решению. Если дискриминант D > 0, корни можно найти по формулам:

Основная формула корней квадратного уравнения

Когда D = 0, можно использовать любую из этих формул — получится одно и то же число, которое и будет ответом. Наконец, если D < 0, корней нет — ничего считать не надо.

  1. x 2 − 2x − 3 = 0;
  2. 15 − 2x − x 2 = 0;
  3. x 2 + 12x + 36 = 0.

Первое уравнение:
x 2 − 2x − 3 = 0 ⇒ a = 1; b = −2; c = −3;
D = (−2) 2 − 4 · 1 · (−3) = 16.

D > 0 ⇒ уравнение имеет два корня. Найдем их:

Второе уравнение:
15 − 2x − x 2 = 0 ⇒ a = −1; b = −2; c = 15;
D = (−2) 2 − 4 · (−1) · 15 = 64.

D > 0 ⇒ уравнение снова имеет два корня. Найдем их

\[\begin{align} & {{x}_{1}}=\frac{2+\sqrt{64}}{2\cdot \left(-1 \right)}=-5; \\ & {{x}_{2}}=\frac{2-\sqrt{64}}{2\cdot \left(-1 \right)}=3. \\ \end{align}\]

Наконец, третье уравнение:
x 2 + 12x + 36 = 0 ⇒ a = 1; b = 12; c = 36;
D = 12 2 − 4 · 1 · 36 = 0.

D = 0 ⇒ уравнение имеет один корень. Можно использовать любую формулу. Например, первую:

Как видно из примеров, все очень просто. Если знать формулы и уметь считать, проблем не будет. Чаще всего ошибки возникают при подстановке в формулу отрицательных коэффициентов. Здесь опять же поможет прием, описанный выше: смотрите на формулу буквально, расписывайте каждый шаг — и очень скоро избавитесь от ошибок.

Неполные квадратные уравнения

Бывает, что квадратное уравнение несколько отличается от того, что дано в определении. Например:

  1. x 2 + 9x = 0;
  2. x 2 − 16 = 0.

Несложно заметить, что в этих уравнениях отсутствует одно из слагаемых. Такие квадратные уравнения решаются даже легче, чем стандартные: в них даже не потребуется считать дискриминант. Итак, введем новое понятие:

Уравнение ax 2 + bx + c = 0 называется неполным квадратным уравнением, если b = 0 или c = 0, т.е. коэффициент при переменной x или свободный элемент равен нулю.

Разумеется, возможен совсем тяжелый случай, когда оба этих коэффициента равны нулю: b = c = 0. В этом случае уравнение принимает вид ax 2 = 0. Очевидно, такое уравнение имеет единственный корень: x = 0.

Рассмотрим остальные случаи. Пусть b = 0, тогда получим неполное квадратное уравнение вида ax 2 + c = 0. Немного преобразуем его:

Поскольку арифметический квадратный корень существует только из неотрицательного числа, последнее равенство имеет смысл исключительно при (−c /a ) ≥ 0. Вывод:

  1. Если в неполном квадратном уравнении вида ax 2 + c = 0 выполнено неравенство (−c /a ) ≥ 0, корней будет два. Формула дана выше;
  2. Если же (−c /a ) < 0, корней нет.

Как видите, дискриминант не потребовался — в неполных квадратных уравнениях вообще нет сложных вычислений. На самом деле даже необязательно помнить неравенство (−c /a ) ≥ 0. Достаточно выразить величину x 2 и посмотреть, что стоит с другой стороны от знака равенства. Если там положительное число — корней будет два. Если отрицательное — корней не будет вообще.

Теперь разберемся с уравнениями вида ax 2 + bx = 0, в которых свободный элемент равен нулю. Тут все просто: корней всегда будет два. Достаточно разложить многочлен на множители:

Вынесение общего множителя за скобку

Произведение равно нулю, когда хотя бы один из множителей равен нулю. Отсюда находятся корни. В заключение разберем несколько таких уравнений:

Задача. Решить квадратные уравнения:

  1. x 2 − 7x = 0;
  2. 5x 2 + 30 = 0;
  3. 4x 2 − 9 = 0.

x 2 − 7x = 0 ⇒ x · (x − 7) = 0 ⇒ x 1 = 0; x 2 = −(−7)/1 = 7.

5x 2 + 30 = 0 ⇒ 5x 2 = −30 ⇒ x 2 = −6. Корней нет, т.к. квадрат не может быть равен отрицательному числу.

4x 2 − 9 = 0 ⇒ 4x 2 = 9 ⇒ x 2 = 9/4 ⇒ x 1 = 3/2 = 1,5; x 2 = −1,5.

Муниципальное общеобразовательное учреждение
«Косинская основная общеобразовательная школа»

Урок с использованием ИКТ

Решение квадратных уравнений по формуле.

Разработчик:
Черевина Оксана Николаевна
учитель математики

Цель:
закрепить решение квадратных уравнений по формуле,
способствовать выработке у школьников желания и потребности обобщения изучаемых фактов,
развивать самостоятельность и творчество.

Оборудование:
математический диктант (Презентация 1),
карточки с разноуровневыми заданиями для самостоятельной работы,
таблица формул для решения квадратных уравнений(в уголке «В помощь к уроку»),
распечатка «Старинной задачи» (количество учащихся),
балльно-рейтинговая таблица на доске.

Общий план:
Проверка домашнего задания
Математический диктант.
Устные упражнения.
Решение упражнений на закрепление.
Самостоятельная работа.
Историческая справка.

Ход урока.
Оргмомент.

Проверка домашнего задания.
- Ребята, с какими уравнениями мы по познакомились на прошедших уроках?
- Какими способами можно решать квадратные уравнения?
- Дома вы должны были решить 1 уравнение двумя способами.
(Уравнение давалось 2-х уровней, рассчитанное на слабых и сильных учеников)
- Давайте вместе со мной проверим. как вы справились с заданием.
(на доске учитель до урока делает запись решения дом. задания)
Ученики проверяют и делают вывод: неполные квадратные уравнения легче решать разложением на множители или обычным способом, полные – по формуле.
Учитель подчеркивает: не зря способ решения кв. уравнений по формуле называют универсальным.

Повторение.

Сегодня на уроке мы продолжим с вами заниматься решением квадратных уравнений. Урок у нас будет необычный, потому что сегодня вас не только я буду оценивать, но и вы сами. Чтобы заработать хорошую оценку и успешно справиться с самостоятельной работой, вы должны заработать как можно больше баллов. По одному баллу, я думаю, вы уже заработали, справившись с домашним заданием.
- А теперь я хочу, чтобы вы вспомнили и еще раз повторили определения и формулы, изученные нами по данной теме.(Ответы учащихся оцениваются 1 баллом за правильный ответ, и 0 баллов - неправильный)
- А сейчас, ребята, мы с вами выполним математический диктант, внимательно и быстро читайте задание на мониторе компьютера. (Презентация 1)
Учащиеся выполняют работу, и с помощью ключа оценивают свою деятельность.

Математический диктант.

Квадратным уравнением называют уравнение вида…
В квадратном уравнении 1-й коэффициент -…, 2-й коэффициент -…, свободный член - …
Квадратное уравнение называют приведенным, если…
Напишите формулу вычисления дискриминанта квадратного уравнения
Напишите формулу вычисления корня квадратного уравнения, если корень в уравнении один.
При каком условии квадратное уравнение не имеет корней?

(самопроверка с помощью ПК, за каждый правильный ответ - 1 балл).

Устные упражнения. (на обратной стороне доски)
- Назовите сколько корней имеет каждое уравнение? (задание также оценивается в 1 балл)
1. (х - 1)(х +11) = 0;
2. (х – 2)² + 4 = 0;
3. (2х – 1)(4 + х) = 0;
4. (х – 0.1)х = 0;
5. х² + 5 = 0;
6. 9х² - 1 = 0;
7. х² - 3х = 0;
8. х + 2 = 0;
9. 16х² + 4 = 0;
10. 16х² - 4 = 0;
11. 0,07х² = 0.

Решение упражнений на закрепление материала.

Из предложенных на мониторе ПК уравнений выполняются самостоятельно(СD-7), при проверке, учащиеся выполнившие вычисления правильно поднимают руки (1 балл); в это время более слабые учащиеся решают на доске по одному уравнению и те, кто справились самостоятельно с заданием получают по 1 баллу.

Самостоятельная работа в 2-х вариантах.
Кто набрал 5 и более баллов начинают самостоятельную работу с №5.
Кто набрал 3 и менее – с №1.

Вариант 1.

а) 3х² + 6х – 6 = 0, б) х² - 4х + 4 = 0, в) х² - х + 1 = 0.

№2. Продолжите вычисление дискриминанта D квадратного уравнения ax² + bx + c = 0 поформуле D = b² - 4ac.

а) 5х² - 7х + 2 = 0,
D = b² - 4ac
D= (-7²) – 4 5 2 = 49 – 40 = …;
б) х² - х – 2 = 0,
D = b² - 4ac
D = (-1) ² - 4 1 (-2) = …;

№3. Закончите решение уравнения
3х² - 5х – 2 = 0.
D = b² - 4ac
D = (-5) ² - 4 3 (-2) = 49.
х = …

№4. Решите уравнение.

а) (х - 5)(х + 3) = 0; б) х² + 5х + 6 = 0

а) (x-3)^2=3x-5; б) (x+4)(2x-1)=x(3x+11)

№6. Решите уравнение x2+2√2 x+1=0
№7. При каком значении а уравнение х² - 2ах + 3 = 0 имеет один корень?

Вариант 2.

№1. Для каждого уравнения вида ax² + bx + c = 0 укажите значения a, b, c.

а) 4х² - 8х + 6 = 0, б) х² + 2х - 4 = 0, в) х² - х + 2 = 0.

№2. Продолжите вычисление дискриминанта D квадратного уравнения ax² + bx + c = 0 по формуле D = b² - 4ac.

а) 5х² + 8х - 4 = 0,
D = b² - 4ac
D = 8² – 4 5 (- 4) = 64 – 60 = …;

б) х² - 6х + 5 = 0,
D = b² - 4ac
D = (-6) ² - 4 1 5 = …;

3№. Закончите решение уравнения
х² - 6х + 5 = 0.
D = b² - 4ac
D = (-6) ² - 4 1 5 = 16.
х = …

№4. Решите уравнение.

а) (х + 4)(х - 6) = 0; б) 4х² - 5х + 1 = 0

№5. Приведите уравнение к квадратному и решите его:

а) (x-2)^2=3x-8; б) (3x-1)(x+3)+1=x(1+6x)

№6. Решите уравнение x2+4√3 x+12=0

№7. При каком значении а уравнение х² + 3ах + а = 0 имеет один корень.

Итог урока.
Подведение итогов по результатам балльно-рейтинговой таблицы.

Историческая справка и задача.
Задачи на квадратные уравнения встречаются уже в 499 году. В Древней Индии были распространены публичные соревнования в решении трудных задач. В одной из старинных индийских книг говорится: «Как солнце блеском своим затмевает звезды, так ученый человек затмит славу другого в народных собраниях, предлагая и решая алгебраические задачи». Часто они были в стихотворной форме. Вот одна из задач знаменитого математика Индии 12 века Бхаскары:
Обезьянок резвых стая
Всласть поевши развлекалась,
Их в квадрате часть восьмая
На поляне забавлялась.
А 12 по лианам…
Стали прыгать, повисая.
Сколько было обезьянок,
Ты скажи мне, в этой стае?

VII. Домашнее задание.
Предлагается решить данную историческую задачу и оформить её на отдельных листах, с рисунком.

ПРИЛОЖЕНИЕ

№ Ф.И.
учащегося Виды деятельности ИТОГ
Домашнее задание Диктант Устные упражнения Закрепление материала
Работа ПК Работа у доски
1 Иванов И.
2 Федоров Г.
3 Яковлева Я.

Максимальное количество – 22-23 балла.
Минимальное – 3-5 баллов

3-10 баллов – оценка «3»,
11-20 баллов – оценка «4»,
21-23 баллов – оценка «5»