Осмотическая электростанция в норвегии. Осмотическая электростанция Принцип работы и потенциал солевых станций

В один прекрасный день 1747 года французский аббат Нолле слил недопитый намедни бордо в свиной мочевой пузырь, доставленный с кухни, и погрузил его в бочонок с водой. Через 262 года, 24 ноября 2009-го, норвежская кронпринцесса Метте-Марит пригубила бокал с шампанским. Как же связаны эти два события? И Нолле, и принцесса совершили выдающиеся открытия. Аббат первым в мире сумел описать феномен осмоса и базовые свойства мембраны, а Метте-Марит, разрезав символическую ленточку, открыла первую в мире осмотическую электростанцию Statcraft в Тофте.

Владимир Санников

О том, чем на самом деле наполнил вошедший в историю свиной пузырь аббат, а по совместительству великий физик-экспериментатор Жан-Антуан Нолле, можно дискутировать. Но наличие воды в обоих сосудах (пузыре и бочке) неоспоримо. Разница состоит лишь в концентрации растворенного в ней спирта. Именно эта разница дала толчок диффузии воды через полупроницаемую мембрану из бочонка в пузырь. По тому, как раздулся пузырь, можно было понять, что явление это рождает весьма значительную однонаправленную силу, которую Нолле назвал осмотическим давлением. А осмос он определил как процесс диффузии растворителя из менее концентрированного раствора в более концентрированный.

В наши дни норвежская компания Statcraft, лидер европейского рынка экологически чистой энергетики, нашла способ превратить это давление в электричество. Новая технология — единственная, способная извлекать джоули из естественной разницы содержания минеральных солей в пресной и морской воде, а не из кинетической энергии их движения. По оценкам норвежцев, мировые ресурсы возобновляемой осмотической энергии составляют от 1,6 до 1,7 тераватт — примерно столько же в 2004 году потребовалось миллиардному Китаю! В отличие от капризного ветра, прибоя и солнца, процессы осмоса не останавливаются ни на секунду 24 часа в сутки круглый год.


Для работы осмотической электростанции не требуются специальные инженерные сооружения: печи, реакторы, плотины, градирни. Первая в мире электростанция на осмосе расположилась в пустующем складе деревоперерабатывающего завода.

Выпить море

Вообще-то явление осмоса используется в промышленных масштабах уже более 40 лет. Только это не классический прямой осмос аббата Нолле, а так называемый обратный осмос — искусственный процесс проникновения растворителя из концентрированного в разбавленный раствор под действием давления, превышающего естественное осмотическое давление. Такая технология применяется в опреснительных и очистительных установках с начала 1970-х. Соленая морская вода нагнетается на специальную мембрану и, проходя через ее поры, лишается значительной доли минеральных солей, а заодно бактерий и даже вирусов. Для прокачивания соленой или загрязненной воды приходится затрачивать большие объемы энергии, но игра стоит свеч — на планете существует множество регионов, где дефицит питьевой воды является острейшей проблемой.

Теоретические разработки в этой области появились еще в начале ХХ века, но для их реализации не хватало главного — подходящей осмотической мембраны. Такая мембрана должна была выдерживать давление, в 20 раз превышающее давление обычного бытового водопровода, и иметь чрезвычайно высокую пористость. Создание материалов с подобными свойствами стало возможным после Второй мировой, когда накопленный в ходе военных проектов научный потенциал дал толчок развитию технологий производства синтетических полимеров.


Трудно поверить, что одна лишь разница в концентрации двух растворов способна создать серьезную силу, однако это действительно так: осмотическое давление может поднять уровень морской воды на 120 м.

Наиболее значительный прорыв в этой области произошел в 1959 году. Сидней Лоэб и Шриниваса Суранджан из Калифорнийского университета в Лос-Анджелесе разработали спиральную анизотропную мембрану, способную выдерживать колоссальное давление, эффективно задерживать минеральные соли и механические частицы размером до 5 мкм и главное — обладающую высокой пропускной способностью при минимальных размерах. Изобретение Лоэба и Суранджана сделало осмотическое опреснение экономически выгодным бизнесом. В начале 1960-х в калифорнийской Коалинге Лоэб построил первую в мире опреснительную станцию на эффекте PRO (Pressure retarded osmosis), а затем перебрался в Израиль, где на средства ЮНЕСКО продолжил свои исследования. При участии Лоэба в 1967 году в местечке Йотвата была построена опреснительная установка мощностью 150 м³ в сутки, производившая чистую питьевую воду из подземного озера с соленостью, десятикратно превышавшей морскую. Еще через три года технология PRO была защищена американским патентом.

Осмос и космос

Мембранная лаборатория в Центре NASA им. Эймса уже много лет подряд занимается решением проблемы обеспечения обитателей космических станций питьевой водой. Ученые разработали технологию DOC, комбинирующую два разнонаправленных процесса — прямой и обратный осмос. При обратном осмосе мембрана работает как фильтр тонкой очистки и требует больших затрат энергии. Прямой осмос, наоборот, производит ее. Каждый из этих процессов по отдельности лишает водные растворы подавляющего количества примесей. В результате получается так называемая серая вода, которую можно использовать для гигиенических целей. Для того чтобы сделать из серой воды питьевую, раствор проходит этап мембранной очистки без дополнительного нагревания и далее очистку от бактерий и вирусов в подсистеме каталитического окисления. Балансовая энергоемкость DOC достаточно низка для применения в космосе.
Оригинальный способ очистки воды для космических станций представила американская компания Osmotek. Для сбора продуктов жизнедеятельности она предлагает использовать мембранные пакеты наподобие чайных с содержащимся в них активированным углем. Мембрана пропускает наружу лишь воду с незначительным количеством загрязнений. Этот первичный раствор затем попадает в мембранную камеру со специальным концентрированным субстратом в другой части. Возникающее явление прямого осмоса завершает процесс.
Компания Oasys обещает снизить расход энергии осмотических опреснительных установок ни много ни мало в десять раз. Правда, в данном случае речь идет не об обратном, а о прямом осмосе. И не простом, а модифицированном. Его суть заключается в наличии на ответной стороне обычной PRO-мембраны патентованного вытягивающего раствора с высоким содержанием аммиака, двуокиси углерода и других химикатов. При контакте двух растворов возникает явление осмоса и происходит очищение исходного сырья от примесей. Изюминка методики Oasys в том, что поток чистой пресной воды не смешивается с вытягивающим раствором.

Опыты по превращению осмотического давления в электрическую энергию с использованием мембран Лоэба-Суранджана проводились различными научными группами и компаниями с начала 1970-х. Принципиальная схема этого процесса была очевидной: поток пресной (речной) воды, проникающий сквозь поры мембраны, наращивает давление в резервуаре с морской водой, тем самым позволяя раскручивать турбину. Затем отработанная солоноватая вода выбрасывается в море. Проблема была лишь в том, что классические мембраны для PRO были слишком дороги, капризны и не обеспечивали необходимой мощности потока. С мертвой точки дело сдвинулось в конце 1980-х, когда за решение задачи взялись норвежские химики Торлейф Хольт и Тор Торсен из института SINTEF.


Космический размах

Мембраны Лоэба требовали клинической чистоты для поддержания максимальной производительности. Конструкция мембранного модуля опреснительной станции предусматривала обязательное наличие первичного фильтра грубой очистки и мощного насоса, сбивавшего мусор с рабочей поверхности мембраны.

Хольт и Торсен, проанализировав характеристики большинства перспективных материалов, остановили свой выбор на недорогом модифицированном полиэтилене. Их публикации в научных журналах привлекли внимание специалистов из Statcraft, и норвежских химиков пригласили продолжить работу под покровительством энергетической компании. В 2001 году мембранная программа Statcraft получила государственный грант. На полученные средства была построена экспериментальная осмотическая установка в Сунндальсьоре для тестирования образцов мембран и обкатки технологии в целом. Площадь активной поверхности в ней была чуть выше 200 м².


На схематичных изображениях осмотическую мембрану рисуют в виде стенки. На самом деле она представляет собой рулон, заключенный в цилиндрический корпус. В его многослойной структуре чередуются слои пресной и соленой воды. Поперечный разрез демонстрирует, как организованы потоки воды внутри осмотического цилиндра. Чем больше таких модулей установят на станции, тем больше энергии она сможет вырабатывать.

Для ускорения процесса в команду были приглашены инженеры из специализированной мембранной лаборатории NASA. Дело в том, что еще со времен подготовки к лунной программе Apollo при Центре NASA им. Эймса проводились глубокие исследования технологий опреснения и очистки водных растворов. Опыт американцев пришелся как нельзя кстати, и к 2008 году у Statcraft появились первые образцы спиральных полиимидных мебран для будущих осмотических электростанций. Их производительность составила 1 Вт на 1 м² при диффузии 10 л пресной воды в секунду под давлением 10 бар.

На станции в Тофте работают именно такие мембранные модули общей площадью 2000 м². Для выработки 4кВт этого вполне достаточно, но для полноценной 25-мегаваттной станции потребовалось бы аж 5 млн квадратов. Разумеется, мембраны для осмотических электростанций должны быть гораздо эффективнее нынешних. Стайн Эрик Скиллхаген, вице-президент Statcraft, курирующий программу, утверждает, что сейчас компания тестирует спиральные образцы из полых волокон производительностью 3 Вт/м2, а к 2015 году появятся плоские 5-ваттные мембраны. Кроме того, норвежцы внимательно изучают сторонние разработки в этой области и активно сотрудничают со специалистами из General Electric, Hydranautics, Dow и японской Toray.


В Голландии каждую секунду в соленое море низвергается 3300 кубометров речной воды. Ученые подсчитали, что ее суммарный энергетический потенциал составляет 4,5*10 9 Вт. Исследователи из KEMA также намерены выловить хотя бы часть энергии из этой бездонной бочки, но без лишней, по их мнению, механики. И такая возможность существует. Пока — в виде экспериментальной установки обратного электродиализа RED (reverse electrodialysis). В ней также используются морская и пресная вода, разделенные полупроницаемыми границами. Вот только мембран здесь две, и они выполняют роль электродов. Ведь RED — это батарея, работающая благодаря разнице в концентрациях ионов в двух средах. Эта разница и создает слабое напряжение на поверхности анодной и катодной мембран. Если из них собрать пакет, то вольтаж получится весьма ощутимым. Например, батарейка размером со стандартный морской контейнер выдает почти 250 кВт. KEMA с 2006 года эксплуатирует маленькую 50-киловаттную установку в Харлингене. На ней тестируются способы очистки и предотвращения загрязнения мембран биоматериалом. Клиническая чистота — критически важный фактор эффективной работы системы.

Кстати, мембрана для прямого осмоса — это не тонкая стенка, которую рисуют на упрощенных схемах, а длинный рулон, заключенный в цилиндрический корпус. Соединения с корпусом сделаны таким образом, что во всех слоях рулона с одной стороны мембраны всегда находится пресная вода, а с другой- морская.

Энергия глубин

Разница между соленостью (по-научному — градиент солености) пресной и морской воды — базовый принцип работы осмотической электростанции. Чем она больше, тем выше объем и скорость потока на мембране, а следовательно, и количество энергии, вырабатываемой гидротурбиной. В Тофте пресная вода самотеком поступает на мембрану, в результате осмоса давление морской воды по ту сторону резко возрастает. Силища у осмоса колоссальная — давление может поднять уровень морской воды на 120 м.


Далее полученная разбавленная морская вода устремляется через распределитель давления на лопатки турбины и, отдав им всю свою энергию, выбрасывается в море. Распределитель давления отбирает часть энергии потока, раскручивая насосы, закачивающие морскую воду. Таким образом удается значительно повысить эффективность работы станции. По оценке Рика Стовера, главного технолога компании Energy Recovery, производящей такие устройства для опреснительных заводов, КПД передачи энергии в распределителях приближается к 98%. Точно такие же аппараты при опреснении помогают доставлять питьевую воду в жилые дома.

Как замечает Скиллхаген, в идеале осмотические электростанции нужно совмещать с опреснительными установками — соленость остаточной морской воды в последних в 10 раз выше естественного уровня. В таком тандеме эффективность выработки энергии возрастет не менее чем вдвое.

Строительные работы в Тофте начались осенью 2008 года. На территории завода по производству целлюлозы компании Sódra Cell был арендован пустующий склад. На первом этаже устроили каскад сетчатых и кварцевых фильтров для очистки речной и морской воды, а на втором — машинный зал. В декабре того же года был осуществлен подъем и монтаж мембранных модулей и распределителя давления. В феврале 2009-го группа водолазов проложила по дну залива два параллельных трубопровода — для пресной и морской воды.


Забор морской воды осуществляется в Тофте с глубин от 35 до 50 м — в этом слое ее соленость оптимальна. Кроме того, там она значительно чище, чем у поверхности. Но, несмотря на это, мембраны станции требуют регулярной чистки от забивающих микропоры органических остатков.

С апреля 2009 года электростанция эксплуатировалась в пробном режиме, а в ноябре, с легкой руки принцессы Метте-Марит, была запущена на всю катушку. Скиллхаген уверяет, что вслед за Тофте у Statcraft появятся и другие аналогичные, но более совершенные проекты. И не только в Норвегии. По его словам, подземный комплекс размером с футбольное поле способен бесперебойно снабжать электричеством целый город с 15 000 индивидуальных домов. Причем, в отличие от ветряков, такая осмотическая установка практически бесшумна, не изменяет привычный ландшафт и не влияет на здоровье человека. А о пополнении запасов соленой и пресной воды в ней позаботится сама природа.

Явление осмоса используется в промышленных масштабах уже более 40 лет. Только это не классический прямой осмос аббата Нолле, а так называемый обратный осмос – искусственный процесс проникновения растворителя из концентрированного в разбавленный раствор под действием давления, превышающего естественное осмотическое давление. Такая технология применяется в опреснительных и очистительных установках с начала 1970-х. Соленая морская вода нагнетается на специальную мембрану и, проходя через ее поры, лишается значительной доли минеральных солей, а заодно бактерий и даже вирусов. Для прокачивания соленой или загрязненной воды приходится затрачивать большие объемы энергии, но игра стоит свеч – на планете существует множество регионов, где дефицит питьевой воды является острейшей проблемой.

Трудно поверить, что одна лишь разница в концентрации двух растворов способна создать серьезную силу, однако это действительно так: осмотическое давление может поднять уровень морской воды на 120 м.

Опыты по превращению осмотического давления в электрическую энергию проводились различными научными группами и компаниями с начала 1970-х. Принципиальная схема этого процесса была очевидной: поток пресной (речной) воды, проникающий сквозь поры мембраны, наращивает давление в резервуаре с морской водой, тем самым позволяя раскручивать турбину. Затем отработанная солоноватая вода выбрасывается в море. Проблема была лишь в том, что классические мембраны для PRO (Pressure retarded osmosis) были слишком дороги, капризны и не обеспечивали необходимой мощности потока. С мертвой точки дело сдвинулось в конце 1980-х, когда за решение задачи взялись норвежские химики Торлейф Хольт и Тор Торсен из института SINTEF.


На схематичных изображениях осмотическую мембрану рисуют в виде стенки. На самом деле она представляет собой рулон, заключенный в цилиндрический корпус. В его многослойной структуре чередуются слои пресной и соленой воды.

Мембраны Лоэба требовали клинической чистоты для поддержания максимальной производительности. Конструкция мембранного модуля опреснительной станции предусматривала обязательное наличие первичного фильтра грубой очистки и мощного насоса, сбивавшего мусор с рабочей поверхности мембраны.

Хольт и Торсен, проанализировав характеристики большинства перспективных материалов, остановили свой выбор на недорогом модифицированном полиэтилене. Их публикации в научных журналах привлекли внимание специалистов из Statcraft, и норвежских химиков пригласили продолжить работу под покровительством энергетической компании. В 2001 году мембранная программа Statcraft получила государственный грант. На полученные средства была построена экспериментальная осмотическая установка в Сунндальсьоре для тестирования образцов мембран и обкатки технологии в целом. Площадь активной поверхности в ней была чуть выше 200 м2.

Разница между соленостью (по-научному – градиент солености) пресной и морской воды – базовый принцип работы осмотической электростанции. Чем она больше, тем выше объем и скорость потока на мембране, а следовательно, и количество энергии, вырабатываемой гидротурбиной. В Тофте пресная вода самотеком поступает на мембрану, в результате осмоса давление морской воды по ту сторону резко возрастает. Силища у осмоса колоссальная – давление может поднять уровень морской воды на 120 м.

Далее полученная разбавленная морская вода устремляется через распределитель давления на лопатки турбины и, отдав им всю свою энергию, выбрасывается в море. Распределитель давления отбирает часть энергии потока, раскручивая насосы, закачивающие морскую воду. Таким образом удается значительно повысить эффективность работы станции. По оценке Рика Стовера, главного технолога компании Energy Recovery, производящей такие устройства для опреснительных заводов, КПД передачи энергии в распределителях приближается к 98%. Точно такие же аппараты при опреснении помогают доставлять питьевую воду в жилые дома.

Как замечает Скиллхаген, в идеале осмотические электростанции нужно совмещать с опреснительными установками – соленость остаточной морской воды в последних в 10 раз выше естественного уровня. В таком тандеме эффективность выработки энергии возрастет не менее чем вдвое.

Строительные работы в Тофте начались осенью 2008 года. На территории завода по производству целлюлозы компании Sódra Cell был арендован пустующий склад. На первом этаже устроили каскад сетчатых и кварцевых фильтров для очистки речной и морской воды, а на втором – машинный зал. В декабре того же года был осуществлен подъем и монтаж мембранных модулей и распределителя давления. В феврале 2009-го группа водолазов проложила по дну залива два параллельных трубопровода – для пресной и морской воды.

Забор морской воды осуществляется в Тофте с глубин от 35 до 50 м – в этом слое ее соленость оптимальна. Кроме того, там она значительно чище, чем у поверхности. Но, несмотря на это, мембраны станции требуют регулярной чистки от забивающих микропоры органических остатков.

С апреля 2009 года электростанция эксплуатировалась в пробном режиме, а в ноябре, с легкой руки принцессы Метте-Марит, была запущена на всю катушку. Скиллхаген уверяет, что вслед за Тофте у Statcraft появятся и другие аналогичные, но более совершенные проекты. И не только в Норвегии. По его словам, подземный комплекс размером с футбольное поле способен бесперебойно снабжать электричеством целый город с 15 000 индивидуальных домов. Причем, в отличие от ветряков, такая осмотическая установка практически бесшумна, не изменяет привычный ландшафт и не влияет на здоровье человека. А о пополнении запасов соленой и пресной воды в ней позаботится сама природа.

Понимая, что запасы ископаемых энергоресурсов ограничены, а использование ядерных технологий связано со значительным риском и упирается в проблему захоронения радиоактивных отходов, люди все активнее пытаются поставить себе на службу альтернативные источники энергии. Возобновляемые ресурсы обладают в сумме энергетическим потенциалом, в 3 тысячи раз превышающим сегодняшние потребности человечества. Правда, использованию поддается лишь незначительная часть этого потенциала, но даже этого - уже при нынешнем уровне развития техники - достаточно, чтобы перекрыть энергопотребности почти в 6 раз. Одной лишь солнечной энергии хватило бы с лихвой.

И все же инженеры продолжают изыскивать все новые и новые альтернативные энергоресурсы - или возвращаются к старым идеям, некогда признанным бесперспективными и потому отвергнутым, а теперь снова сулящим успех. Именно к таким проектам относится и пилотная установка, запущенная во вторник в Норвегии. В ее основу положена технология, позволяющая добывать энергию за счет давления, которое возникает при слиянии пресной и соленой воды там, где река впадает в море. Речь идет о так называемом осмосе.

Пресная вода + морская вода = источник энергии

Обычно там, где река впадает в море, пресная вода просто перемешивается с соленой, и никакого давления, которое могло бы послужить источником энергии, там не наблюдается. Профессор Клаус-Виктор Пайнеман (Klaus-Viktor Peinemann) из Института изучения полимеров при Научно-исследовательском центре GKSS в городке Гестхахт на севере Германии, называет те условия, которые необходимы для возникновения осмотического давления: "Если перед смешиванием морскую воду и пресную разделить фильтром - специальной мембраной, пропускающей воду, но непроницаемой для соли, - то стремление растворов к термодинамическому равновесию и выравниванию концентраций сможет реализоваться только за счет того, что вода будет проникать в раствор соли, а соль в пресную воду не попадет".

Если же это происходит в закрытом резервуаре, то со стороны морской воды возникает избыточное гидростатическое давление, называемое осмотическим. Чтобы использовать его для производства энергии, в месте впадения реки в море нужно установить большой резервуар с двумя камерами, отделёнными друг от друга полупроницаемой мембраной, пропускающей воду и не пропускающей соль. Одна камера заполняется соленой, другая - пресной водой. "Возникающее при этом осмотическое давление может быть очень велико, - подчеркивает профессор Пайнеман. - Оно достигает примерно 25-ти бар, что соответствует давлению воды у подножия водопада, низвергающегося с высоты в 100 метров".

Находящаяся под столь высоким осмотическим давлением вода подается на турбину генератора, вырабатывающего электроэнергию.

Главное - правильная мембрана

Казалось бы, все просто. Потому неудивительно, что идея использовать осмос как источник энергии зародилась почти полвека назад. Но… "Одним из главных препятствий в то время стало отсутствие мембран должного качества, - говорит профессор Пайнеман. - Мембраны были чрезвычайно медленными, поэтому эффективность осмотического электрогенератора была бы очень низкой. Но в последующие 20-30 лет произошло несколько технологических прорывов. Мы научились сегодня производить чрезвычайно тонкие мембраны, а это значит, что их пропускная способность стала значительно выше".
Специалисты Научно-исследовательского центра GKSS внесли весомый вклад в разработку той самой мембраны, что позволила теперь на практике реализовать осмотическое энергопроизводство - пусть пока и сугубо экспериментальное. Один из разработчиков, Карстен Бликке (Carsten Blicke), поясняет: "Толщина мембраны составляет около 0,1 микрометра. Для сравнения: человеческий волос имеет в диаметре от 50 до 100 микрометров. Именно эта тончайшая пленка и отделяет, в конечном счете, морскую воду от пресной".

Понятно, что столь тонкая мембрана не может сама по себе выдержать высокое осмотическое давление. Поэтому она наносится на пористую, напоминающую губку, но чрезвычайно прочную основу. В целом такая перегородка выглядит как глянцевая бумага, и то, что на ней имеется пленка, невооруженным глазом заметить невозможно.

Радужные перспективы

Для строительства пилотной установки были необходимы капиталовложения в размере нескольких миллионов евро. Инвесторы, готовые пойти на риск, хоть и не сразу, все же нашлись. Финансировать новаторский проект вызвалась фирма Statkraft - одна из крупнейших энергетических компаний Норвегии, европейский лидер по части использования возобновляемых энергоресурсов. Профессор Пайнеман вспоминает: "Они услышали об этой технологии, пришли в восторг и подписали с нами договор о сотрудничестве. Евросоюз выделил на реализацию этого проекта 2 миллиона евро, остальные средства внесли фирма Statkraft и ряд других компаний, в том числе и наш Институт".

"Ряд других компаний" - это научные центры Финляндии и Португалии, а также одна из норвежских исследовательских фирм. Пилотная установка мощностью от 2 до 4 киловатт, возведенная в Осло-фьорде близ городка Тофте и торжественно вступившая сегодня в строй, предназначена для испытания и совершенствования новаторской технологии. Но руководство компании Statkraft уверено, что уже через несколько лет дело дойдет и до коммерческого использования осмоса. А суммарный мировой потенциал осмотического энергопроизводства оценивается ни много ни мало в 1600-1700 тераватт-часов в год - это примерно половина энергопотребления всего Евросоюза. Важнейшим преимуществом таких установок является их экологичность - они не шумят и не загрязняют атмосферу выбросами парниковых газов. Кроме того, их легко интегрировать в уже имеющуюся инфраструктуру.


Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Ведение

Основным направлением альтернативной энергетики является поиск и использование альтернативных (нетрадиционных) источников энергии. Источники энергии -- «встречающиеся в природе вещества и процессы, которые позволяют человеку получить необходимую для существования энергию». Альтернативный источник энергии является возобновляемым ресурсом, он заменяет собой традиционные источники энергии, функционирующие на нефти, добываемом природном газе и угле, которые при сгорании выделяют в атмосферу углекислый газ, способствующий росту парникового эффекта и глобальному потеплению. Причина поиска альтернативных источников энергии -- потребность получать её из энергии возобновляемых или практически неисчерпаемых природных ресурсов и явлений. Во внимание может браться также экологичность и экономичность

В 2010 году альтернативная энергия (не считая гидроэнергии) составляла 4,9% всей потребляемой человечеством энергии. В том числе для отопления и нагрева воды (биомасса, солнечный и геотермальный нагрев воды и отопление) 3,3%; биогорючее 0,7%; производство электроэнергии (ветровые, солнечные, геотермальные электростанции и биомасса в ТЕС) 0,9%.На возобновляемые (альтернативные) источники энергии приходится всего около 5 % мировой выработки электроэнергии в 2010г.В мае 2009 года 13 % электроэнергии в США были произведены из возобновляемых источников энергии. 9,4 % электроэнергии было выработано на гидроэлектростанциях, около 1,8 % были получены из энергии ветра, 1,3 % из биомассы, 0,4 % из геотермальных источников и 0,3 % от энергии солнца. В Австралии в 2009 году 8 % электроэнергии вырабатывается из возобновляемых источников.

В наше время людям энергии требуется всё больше и больше энергии, поскольку они придумывают всё больше и больше новых изобретений, для которых требуется энергия.

Энергетика зародилась много миллионов лет назад, когда люди научились добывать огонь: они охотились с помощью огня, получали свет и тепло, и он служил источником радости и оптимизма на протяжении многих лет. В своем реферате я расскажу о возможной экологически-чистом источнике энергии, которым люди не загрязняли бы окружающий мир.

1. Обоснование

Почему я выбираю осмотическую электростанцию, как альтернативный вид получения энергии?

Главное преимущества состоит в ее экологичности - нет шума и не загрязняют атмосферу выбросами парниковых газов; - предоставляется непрерывный возобновляемый источник энергии, с незначительными сезонными колебаниями; - легко внедрить уже имеющую инфраструктуру; Осмотическая электростанция может использоваться только в устьях рек, где пресная вода вливается в солёную. Явление осмоса широко распространено в природе, позволяя растениям поглощать влагу листьями, и обычно применяется в процессе опреснения воды.

2. Эффективность использования

Осмотическая электростанция -- стационарная энергетическая установка, основанная на принципе диффузии жидкостей (осмос).

Первая и единственная, на данный момент в мире, осмотическая электростанция построена компанией Statkraft в норвежском городке Тофте, на территории целлюлозно-бумажного комбината «Sцdra Cell Tofte». Строительство электростанции обошлось в 20 миллионов долларов и 10 лет, проведенных в исследованиях и разработке технологии. Эта электростанция пока вырабатывает очень мало энергии: примерно 2--4 киловатта. Впоследствии планируется увеличить выработку энергии до 10 киловатт.

На данный момент электростанция имеет вид экспериментальной, но в случае успешного завершения испытаний, станция будет запущена для коммерческого использования.

Казалось бы, все просто. Потому неудивительно, что идея использовать осмос как источник энергии зародилась почти полвека назад. Но… "Одним из главных препятствий стало отсутствие мембран должного качества, -об этом говорил профессор Пайнеман. - Мембраны были чрезвычайно медленными, поэтому эффективность осмотического электрогенератора была бы очень низкой. Но в последующие 20-30 лет произошло несколько технологических прорывов. Мы научились сегодня производить чрезвычайно тонкие мембраны, а это значит, что их пропускная способность стала значительно выше". Специалисты Научно-исследовательского центра GKSS внесли весомый вклад в разработку той самой мембраны, что позволила теперь на практике реализовать осмотическое энергопроизводство - пусть пока и сугубо экспериментальное. И отсюда следует, что эффективность этой энергии хоть и мала, но это легко компенсируется массовостью таких установок.

осмотический электростанция альтернативный энергетика

3. Технологии

Итак, там где реки впадают в моря и океаны мы имеем огромные источники как пресной так и солёной воды по соседству -- это идеальное место для строительства осмотических электростанций. Как же получить энергию? Наиболее простой способ -- поместить воду в резервуар, который разделен на два отсека полупроницаемой мембраной.

В один отсек подается морская вода, а в другой пресная. За счёт разной концентрации солей в морской и пресной воде, молекулы воды из пресного отсека, стремясь выровнять концентрацию соли, переходят через мембрану в морской отсек. В результате этого процесса в отсеке с морской водой формируется избыточное давление, которое в свою очередь используется для вращения гидротурбины вырабатывающей электроэнергию.

Еще нужно выделить преимущества и недостатки осматической электроэнергии.

Преимущества:

В отличие от ветра и солнца, предоставляется непрерывный возобновляемый источник энергии, с незначительными сезонными колебаниями.

Отсутствует парниковый эффект.

Недостатки:

У текущей мембраны показатель составляет 1 Вт/мІ. Показатель, который позволит сделать станции рентабельными -- 5 Вт/мІ. В мире есть несколько компаний, производящих подобные мембраны (General Electric, Dow Chemical, Hydranautics, Toray Industries), но устройства для осмотической станции должны быть гораздо тоньше производимых сейчас.

Осмотическая электростанция может использоваться только в устьях рек, где пресная вода вливается в солёную.

4. Перспективы

Главным преимуществом ОЭС перед другими типами электростанций является использование ею крайне дешевого сырья. По сути, оно бесплатно, ведь 92-93% поверхности планеты покрыто соленой водой, а пресную несложно получить тем же методом осмотического давления в другой установке. Установив электростанцию в устье реки, впадающей в море, можно одним махом решить все проблемы с поставками сырья. Климатические условия для работы ОЭС не важны - пока вода течет, установка работает.

При этом не создается каких-либо токсичных веществ - на выходе образуется все та же соленая вода. ОЭС абсолютно экологически безопасна, ее можно установить в непосредственной близости от жилых районов. Электростанция не наносит вред живой природе, а для ее сооружения нет необходимости перекрывать реки плотинами, как в случае с ГЭС.

Перспективы использования в России. Реки являются основой водного фонда России. Занимая порядка 12% территории суши, Россия отличается хорошо развитой речной сетью, а также уникальным водным побережьем, имеющим протяженность примерно 60 тыс. км. Реки России принадлежат к бассейнам трех океанов: Северного Ледовитого, Тихого и Атлантического. Таким образом у России есть огромный потенциал в освоении осмотической энергии интерес к этому источнику возобновляемой энергии растет, и ученые всего мира объединяют усилия по его освоению.

Канадская компания Hydro-Quйbec, являющаяся крупнейшим мировым производителем электроэнергии на основе гидроэнергии, совместно с Statkraft ведет исследования, связанные со следующим этапом разработки технологии PRO. Кроме того она изучает возможность создания осмотических станций вдоль береговой линии Канады.

В Японии Токийский технологический институт открыл научно-исследовательский центр по изучению осмотической энергии. По мнению его сотрудников, энергетический потенциал японских рек -- если его реализовать, построив осмотические станции в местах впадения рек в море, -- позволяет заменить 5-6 АЭС.

Заключение

Роль энергии в поддержании и дальнейшем развитии цивилизации очень велика. В современном обществе трудно найти хотя бы одну область человеческой деятельности, которая не требовала бы - прямо или косвенно - больше энергии, чем ее могут дать мускулы человека. Потребление энергии - важный показатель жизненного уровня. В те времена, когда человек добывал пищу, собирая лесные плоды и охотясь на животных, ему требовалось в сутки около 8 МДж энергии. После овладения огнем эта величина возросла до 16 МДж: в примитивном сельскохозяйственном обществе она составляла 50 МДж, а в более развитом - 100 МДж.

В процессе развития цивилизации много раз происходила смена традиционных источников энергии на новые, более совершенные не потому, что старый источник был исчерпан.

Самым мощным источником энергии является ядерный - лидер энергетики. Запасы урана, если сравнивать их с запасами угля, не столь уж и велики. Но зато на единицу веса он содержит в себе энергии в миллионы раз больше, чем уголь. При получении электроэнергии на АЭС нужно затратить, считается, в сто тысяч раз меньше средств и труда, чем при извлечении энергии из угля. И ядерное горючее приходит на смену нефти и углю... Всегда было так: следующий источник энергии был и более мощным. То была, если можно так выразиться, "воинствующая" линия энергетики. В будущем при интенсивном развитии энергетики возникнут рассредоточенные источники энергии не слишком большой мощности, но зато с высоким КПД, экологически чистые, удобные в обращении. Например - быстрый старт электрохимической энергетики, которую позднее, видимо, дополнит энергетика солнечная. Энергетика очень быстро аккумулирует, ассимилирует, вбирает в себя все самые новейшие идей, изобретения, достижения науки. Это и понятно: энергетика связана буквально со всем, и все тянется к энергетике, зависит от нее. Поэтому энергохимия, водородная энергетика, космические электростанции, энергия, запечатанная в антивеществе, кварках, "черных дырах", вакууме, - это всего лишь наиболее яркие вехи, штрихи, отдельные черточки того сценария, который пишется на наших глазах и который можно назвать Завтрашним Днем Энергетики.

В заключение можно сделать вывод, что альтернативные формы использования энергии неисчислимы при условии, что нужно разработать для этого эффективные и экономичные методы. Главное - проводить развитие энергетики в правильном направлении.

Размещено на Allbest.ru

...

Подобные документы

    Виды классических источников энергии. Основные причины, указывающие на важность скорейшего перехода к альтернативным источникам энергии. Молния как источник грозовых перенапряжений. Преимущества и недостатки, принцип действия грозовой электростанции.

    курсовая работа , добавлен 20.05.2016

    Основные виды альтернативной энергии. Биоэнергетика, энергия ветра, Солнца, приливов и отливов, океанов. Перспективные способы получения энергии. Совокупная мощность ветроэлектростанций Китая, Индии и США. Доля альтернативной энергетики в России.

    презентация , добавлен 25.05.2016

    Типовые источники энергии. Проблемы современной энергетики. "Чистота" получаемой, производимой энергии как преимущество альтернативной энергетики. Направления развития альтернативных источников энергии. Водород как источник энергии, способы его получения.

    реферат , добавлен 30.05.2016

    Основные достоинства и недостатки геотермальной энергии. Мировой потенциал геотермальной энергии и перспективы его использования. Система геотермального теплоснабжения, строительство геотермальных электростанций. Востребованность геотермальной энергетики.

    контрольная работа , добавлен 31.10.2011

    История развития геотермальной энергетики и преобразование геотермальной энергии в электрическую и тепловую. Стоимость электроэнергии, вырабатываемой геотермальными элетростанциями. Перспективность использования альтернативной энергии и КПД установок.

    реферат , добавлен 09.07.2008

    Проблемы развития и существования энергетики. Типы альтернативных источников энергии и их развитие. Источники и способы использования геотермальной энергии. Принцип работы геотермальной электростанции. Общая принципиальная схема ГеоЭС и ее компоненты.

    курсовая работа , добавлен 06.05.2016

    Типология альтернативной энергетики. Возобновляемая энергия в арабских странах. Ядерная энергетика и ее резервы в арабских странах. Переход к использованию альтернативных источников энергии. Достигнутые результаты в сфере альтернативной энергетики.

    контрольная работа , добавлен 08.01.2017

    Существующие источники энергии. Типы электростанций. Проблемы развития и существования энергетики. Обзор альтернативных источников энергии. Устройство и принцип работы приливных электростанций. Расчет энергии. Определение коэффициента полезного действия.

    курсовая работа , добавлен 23.04.2016

    Основные сведения об альтернативной энергетики. Преимущества и недостатки вакуумных коллекторов. Снижение зависимости от поставок энергоносителей. Применение фокусирующих коллекторов. Преимущества использования экологически чистой солнечной энергии.

    реферат , добавлен 21.03.2015

    Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.

Осмос (от греческого слова Osmos - толчок, давление), диффузия вещества, обычно растворителя, через полупроницаемую мембрану, разделяющую раствор и чистый растворитель или два раствора различной концентрации. Полупроницаемую мембрану - перегородка, пропускающая малые молекул растворителя, но непроницаемая для больших молекул растворенного вещества. Явление осмоса (выравнивание концентраций растворов, разделенных полупроницаемой мембраной) лежит в основе обмена веществ, всех живых организмов. Например, стенки клеток растений, животных и человека представляют собой естественную мембрану, которая является частично проницаемой, поскольку она свободно пропускает молекулы воды, но не молекулы других веществ. Когда корни растений впитывало воду, стены их клеток формируют натуральную осмотическую мембрану, которая пропускает молекулы воды и отторгается большинство примесей. Травы и цветы стоят вертикально только за счет так называемого осмотического давления. Поэтому при недостатке воды они выглядят пожухлыми и вялыми. Фильтрующая способность природной мембраны уникальна, она отделяет вещества от воды на молекулярном уровне и именно это позволяет любому живому организму существовать.

Применение мембран для отделения одних компонентов раствора от других известно очень давно. В первой Аристотель обнаружил, что морская вода опресняется, если ее пропустить через стенки воскового сосуда. Изучение этого явления и других мембранных процессов началось гораздо позже, в начале XVIII века, когда Реомюр использовал для научных целей полупроницаемые мембраны природного происхождения. Но к середине 20-х годов прошлого века все эти процессы имели сугубо теоретический интерес, не выходя за пределы лабораторий. В 1927 году немецкая фирма "Сарториус" получила первые образцы искусственных мембран. И только в середине прошлого века американские разработчики, наладили производство ацетатцеллюлозных и нитроцеллюлозных мембран. В конце 50-х - начале 60-х годов с началом широкого производства синтетических полимерных материалов появились первые научные работы, которые легли с основу промышленного применения обратного осмоса.

Первые промышленные возвратно-осмотические системы появились только в начале 70 X лет, поэтому это сравнительно молодая технология по сравнению с тем же ионным обменом или адсорбцией на активированных углях. Однако, в Западных странах обратный осмос стал одним из самых экономичных, универсальных и надежных методов очистки воды, который позволяет снизить концентрацию компонентов, находящихся в воде, на 96-99% и практически на 100% избавиться микроорганизмов и вирусов. Механизм переноса молекул воды через осмотическую мембраны чаще всего представляет собой обычную фильтрацию, при которой происходит задержка частиц размером больше диаметра поросмотичнои мембраны. Выравнивание концентраций по обе стороны такой мембраны возможно только при односторонней диффузии растворителя. Поэтому осмос всегда идет от чистого растворителя к раствору или от разбавленного раствора к концентрированному раствору. В частности, явление осмоса наблюдается, когда два соляные растворы с различными концентрациями разделены полупроницаемой мембраной. Эта мембрана пропускает молекулы и ионы определенного размера, но служит барьером для веществ с молекулами большего размера. Таким образом, молекулы воды способны проникать через мембрану, а молекулы растворенных в воде солей - нет. Если по разные стороны полупроницаемой мембраны находятся солевмистни растворы воды с различной концентрацией солей, молекулы воды будут перемешаться через мембрану из слабо концентрированного раствора в более концентрированный, вызывая в последнем повышение уровня жидкости. Через явление осмоса процесс проникновения воды через мембрану наблюдается даже в том случае, когда оба раствора находятся под одинаковым внешним давлением. Разница в высоте уровней двух растворов разной концентрации пропорциональна силе, под действием которой вода проходит через мембрану. Эта сила называется "осмотическим давлением". На Рис. 23.1. Приведена схема, иллюстрирующая явление осмоса.

Рис. 23.1.

Принцип работы осмотического электростанции основан на образовании осмотического давления. В местах, где река впадает в море, пресная речная вода просто перемешивается с соленой морской водой, и никакого давления, которое могло бы послужить источником энергии, там не наблюдается. Однако, если перед смешиванием морскую воду и пресную разделить фильтром - специальной мембраной, пропускающей воду, но не пропускающей соли, то стремление растворов к термодинамического равновесия и выравниванию концентраций сможет реализоваться только за счет того, что вода будет проникать в раствор соли, а соль в пресную воду не попадет. Специальная мембрана, пропускающая воду, но не проницаема молекулы соли, ставится между двумя резервуарами. В один из них заполняется пресной водой, в другой заполняется соленой водой. Поскольку такая система стремится к равновесию, более соленая вода как бы вытягивает пресную воду из резервуара. Если же это происходит в закрытом резервуаре, то со стороны морской воды возникает избыточное гидростатическое давление. При этом, появляется давление, создает водный поток. Если теперь установить турбину с генератором, избыточное давление будет вращать лопасти турбины и производить электричество На Рис. 23.2. Показана упрощенная схема осмотического станции. На этом Рис.: 1 - морская вода; 2 речная вода; 3 - фильтры; 4 - мембрана; 5 - рабочая камера; 6 - вывод отработанной речной воды; 7 - турбина с электрическим генератором; 8 - вывод.

Рис. 23.2.

Теоретические разработки в этой области появились еще в начале XX века, но для их реализации не хватало главного - подходящей осмотического мембраны. Такая мембрана должна была выдерживать давление, в 20 раз превышающий давление обычного бытового водопровода, и иметь очень высокую пористость. Создание материалов с подобными свойствами стало возможным с развитием технологий производства синтетических полимеров. Действительно, толщина эффективной мембраны составляет около 0,1 микрометра. Для сравнения: человеческий волос имеет в диаметре от 50 до 100 микрометров. Именно эта тончайшая пленка и отделяет, в конечном итоге, морскую воду от пресной воды. Понятно, что столь тонкая мембрана не может сама по себе выдержать высокое осмотическое давление. Поэтому она наносится на пористую напоминающий губку но чрезвычайно прочную основу. Кстати, мембрана для прямого осмоса - это не тонкая стенка, которую рисуют на упрощенных схемах, а длинный рулон, заключенный в цилиндрический корпус. Соединение с корпусом сделаны таким образом, что во всех слоях рулона с одной стороны мембраны всегда находится пресная вода, а с другой - стороны морская, как это показано на Рис. 23.3. На этом Рис.: 1 - пресная вода; 2 - морская вода; 3 - мембрана. На Рис. 23.4. Показано устройство мембраны, помещенной в металлический корпус, цилиндрической формы. На этом Рис.: 1 - пресная вода; 2 - морская вода; 3 - мембрана; 4 - металлический корпус. Применяемые в настоящее время композитные мембраны позволяют значительно снизить гидродинамическое сопротивление. В них тонкий селективный слой наносится химическим путем на пористую основу (подложку). Толщина селективного слоя составляет 0,1-1,0 мкм, а толщина пористой основы - 50-150 мкм. Подложка практически не создает сопротивления потоку благодаря широким порам, а сопротивление селективного слоя значительно снижается благодаря значительному сокращению его толщины. В целом композитная структура мембраны обеспечивает механическую прочность за счет

Рис. 23.3.

Рис. 23.4.

толщины пористой подложки, а кроме того, позволяет снизить общее сопротивление мембраны за счет тонкости селективного слоя. Селективный слой обратных осмотических мембран выполнен из полиамидного материала.

На Рис. 23.S. показано устройство осмотического станции, использует рулонные мембраны.

На этом Рис.: 1 - введение морской воды; 2 - введение речной воды; 3 - фильтры; 4 - рулонные мембраны; 5 - герметичная камера с высоким осмотическим давлением; 6- турбина с электрогенератором.

В 2009 году в Норвегии в городе Тофте начала работу первая в мире электростанция, использующая разницу солености морской и пресной воды для получения электроэнергии. В построенной осмотического электростанции, в отсеке с морской водой создается давление, эквивалентное давления столба воды высотой 120 метров. Это давление приводит в действие вал турбины которой соединен с электрогенератором. Пресная вода самотеком поступает на мембрану. Забор морской воды осуществляется в Тофте с глубин от 35 до 50 метров - в этом слое ее соленость оптимальна. Кроме того, там она значительно чище, чем у поверхности. Но, несмотря на это, мембраны станции требуют регулярной чистки от органических остатков, забивают ее микропоры. На сегодняшний день эта осмотическое станция производит около 1 кВт энергии. В ближайшее время эта цифра может увеличиться до 2-4 кВт. Для того чтобы можно было говорить о рентабельности производства, необходимо

Рис. 23.5. Осмотическое станция с рулонными мембранами

получить выработка около 5 кВт. Однако, это вполне реальная задача. До 2015 года планируется построить большую станцию, которая обеспечит выработку 25 МВт, что позволит питать электричеством 10000 средних домохозяйств. В перспективе же предполагается, что осмотические электростанции станут такими мощными, что смогут производить 1700 ТВт в год, столько, сколько сейчас производит половина Европы.

Преимущества осмотических станций. Во-первых, соленая вода (для работы станции подходит обычная морская вода) является неисчерпаемым природным ресурсом. Поверхность Земли на 94% покрыта водой, 97% которой является соленой, поэтому для таких станций всегда будет топливо. Во-вторых, для строительства осмотических электростанций не нужно строительства специальных гидротехнических сооружений. Экологичность данного способа получения электроэнергии. Никаких отходов, окисляются материалов для резервуаров, вредных испарений. Осмотические электростанции могут быть установлены даже в пределах города, не нанося никакого ущерба его жителям.

Недавно Япония сообщила, что планирует производить энергию с помощью осмотических станций. Япония окружена со всех сторон океаном, в который впадают многочисленные реки. Потому что они текут постоянно, процесс добычи электроэнергии станет непрерывным. Среди плюсов осмотического способа получения энергии это независимость от рельефа местности, станция сможет работать и на равнине. Основными являются географические условия, при которых происходит смешение пресной и соленой воды. Таким образом, устанавливать осмотические электростанции можно в любых районах Японии, где реки впадают в океан. Осмотическая станция смогут производить 5-6 миллионов кВт энергии, для сравнения такой же объем производят 5-6 атомных электростанций, как утверждает Акихико Таниока, профессор Токийского технического университета. К тому же, Япония является одним из главных производителей осмотических мембран. Сейчас на долю японских компаний приходится 70% мирового импорта мембран.