Формула сложения перемещений. Сложение скоростей. Закон движения центра масс и закон сохранения импульса

«Физика - 10 класс»

Изменится ли движение, если мы будем его описывать в разных системах координат?
В любой ли системе координат удобно описывать движение?

Пусть по реке плывёт моторная лодка и нам известна её скорость 1 относительно воды, точнее, относительно системы координат K 1 , движущейся вместе с водой (рис. 1.19).

Такую систему координат можно связать, например, с мячом, выпавшим из лодки и плывущим по течению. Если известна ещё и скорость течения реки относительно системы координат К 2 , связанной с берегом, т. е. скорость системы координат Кх относительно системы координат К 2 , то можно определить скорость лодки 2 относительно берега.

За промежуток времени Δt перемещения лодки и мяча относительно берега равны Δ 2 и Δ (рис. 1.20), а перемещение лодки относительно мяча равно Δ 1 . Из рисунка 1.20 видно, что

Δ 2 = Δ 1 + Δ. (1.7)

Разделив левую и правую части уравнения (1.7) на Δt, получим

Учтём также что отношения перемещений к интервалу времени равны скоростям. Поэтому

Скорости складываются геометрически, как и все другие векторы. Уравнение (1.8) называют законом сложения скоростей .


Закон сложения скоростей

Если тело движется относительно некоторой системы координат К 1 со скоростью и сама система К 1 движется относительно другой системы координат К 2 со скоростью 1 , то скорость тела относительно второй системы равна геометрической сумме скоростей 1 и .


Как запишется классический закон сложения скоростей, если (1.9) неподвижной считать систему, связанную с мячом, а подвижной - с берегом?

Как и любое векторное уравнение, уравнение (1.8) представляет собой компактную запись скалярных уравнений, в данном случае - для сложения проекций скоростей движения на плоскости:

υ 2x = υ 1x + υ x ,
υ 2y = υ 1y + υ y . (1.9)

Проекции скоростей складываются алгебраически.

Закон сложения скоростей позволяет определять скорость тела относительно разных систем отсчёта, движущихся относительно друг друга.

Классический закон сложения скоростей справедлив для тел, движущихся со скоростями, много меньшими скорости света.

Часто скорость тела относительно неподвижной системы координат называют абсолютной скоростью , относительно подвижной системы координат - относительной, а скорость тела отсчёта, связанного с подвижной системой, относительно неподвижной - переносной скоростью .

Тогда закон сложения скоростей имеет вид a = отн + пер.


Источник: «Физика - 10 класс», 2014, учебник Мякишев, Буховцев, Сотский




Кинематика - Физика, учебник для 10 класса - Класс!ная физика

Физика и познание мира --- Что такое механика ---

  1. Если человек идёт по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда идёт по направлению движения поезда, и со скоростью 50 - 5 = 45 километров в час, когда он идёт в обратном направлении.

В XIX веке классическая механика столкнулась с проблемой распространение этого правила сложения скоростей на оптические (электромагнитные) процессы. По существу произошёл конфликт между двумя идеями классической механики, перенесёнными в новую область электромагнитных процессов.

Вторая идея - принцип относительности. Находясь на корабле, движущимся равномерно и прямолинейно, нельзя обнаружить его движение какими-то внутренними механическими эффектами. Распространяется ли этот принцип на оптические эффекты? Нельзя ли обнаружить абсолютное движение системы по вызванным этим движением оптическим или, что то же самое электродинамическими эффектами? Интуиция (довольно явным образом связанная с классическим принципом относительности) говорит, что абсолютное движение нельзя обнаружить какими бы то ни было наблюдениями. Но если свет распространяется с определённой скоростью относительно каждой из движущихся инерциальных систем, то эта скорость изменится при переходе от одной системы к другой. Это вытекает из классического правила сложения скоростей. Говоря математическим языком, величина скорости света не будет инвариантна относительно галлилеевых преобразованиям. Это нарушает принцип относительности, вернее, не позволяет распространить принцип относительности на оптические процессы. Таким образом электродинамика разрушила связь двух, казалось бы, очевидных положений классической физики - правила сложения скоростей и принципа относительности. Более того, эти два положения применительно к электродинамике оказались несовместимыми.

Литература

  • Б. Г. Кузнецов Эйнштейн. Жизнь, смерть, бессмертие. - М.: Наука, 1972.
  • Четаев Н. Г. Теоретическая механика. - М.: Наука, 1987.
  • Смотреть что такое «Правило сложения скоростей» в других словарях:

    Сложение скоростей - При рассмотрении сложного движения (то есть когда точка или тело движется в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта. Содержание 1 Классическая механика 1.1 Примеры … Википедия

    Механика - [от греч. mechanike (téchne) наука о машинах, искусство построения машин], наука о механическом движении материальных тел и происходящих при этом взаимодействиях между телами. Под механическим движением понимают изменение с течением… … Большая советская энциклопедия

    ВЕКТОР - В физике и математике вектор это величина, которая характеризуется своим численным значением и направлением. В физике встречается немало важных величин, являющихся векторами, например сила, положение, скорость, ускорение, вращающий момент,… … Энциклопедия Кольера

    Зоммерфельд, Арнольд - Арнольд Зоммерфельд Arnold Sommerfeld Зоммерфельд в … Википедия

    ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ - физическая теория, рассматривающая пространственно временные свойства физич. процессов. Эти свойства являются общими для всех физич. процессов, поэтому их часто наз. просто свойствами пространства времени. Свойства пространства времени зависят от … Математическая энциклопедия

    Правило сложения скоростей

    Классическая механика

  • Абсолютная скорость мухи, ползущей по радиусу вращающейся граммофонной пластинки, равна сумме скорости её движения относительно пластинки и той скорости, с которой её переносит пластинка за счёт своего вращения.
  • Релятивистская механика

    Классическое правило сложения скоростей соответствует преобразованию координат от одной системы осей к другой системе, движущиеся относительно первой без ускорения. Если при таком преобразовании мы сохраняем понятие одновременности, то есть сможем считать одновременными два события не только при их регистрации в одной системе координат, но и во всякой другой инерциальной системе, то преобразования называются галилеевыми . Кроме того, при галилеевых преобразованиях пространственное расстояние между двумя точками - разница между их координатами в одной инерциальной системе осчёта - всегда равно их расстоянию в другой инерциальной системе.

    Теория относительности даёт ответ на этот вопрос. Она расширяет понятие принципа относительности, распространяя его и на оптические процессы. Правило сложение скоростей при этом не отменяется совсем, а лишь уточняется для больших скоростей с помощью преобразования Лоренца:

    Можно заметить, что в случае, когда , преобразования Лоренца переходят в преобразования Галилея. То же самое происходит в случае, когда . Это говорит о том, что специальная теория относительности совпадает с механикой Ньютона либо в мире с бесконечной скоростью света, либо при скоростях, малых по сравнению со скоростью света. Последнее объясняет, каким образом сочетаются эти две теории - первая является уточнением второй.

    ОТНОСИТЕЛЬНОСТИ ТЕОРИЯ - физическая теория, рассматривающая пространственно временные закономерности, справедливые для любых физ. процессов. Универсальность пространственно временных св в, рассматриваемых О. т., позволяет говорить о них просто как о.св вах пространства… … Физическая энциклопедия

    закон - а; м. 1. Нормативный акт, постановление высшего органа государственной власти, принятый в установленном порядке и имеющий юридическую силу. Кодекс законов о труде. З. о социальном обеспечении. З. о воинской обязанности. З. о рынке ценных бумаг.… … Энциклопедический словарь

    При рассмотрении сложного движения (то есть когда точка или тело движутся в одной системе отсчёта, а она движется относительно другой) возникает вопрос о связи скоростей в 2 системах отсчёта.

    Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости самой подвижной системы отсчета относительно неподвижной системы.

    Например, если рассмотреть пример с волнами на поверхности воды из предыдущего раздела и попробовать обобщить на электромагнитные волны, то получится противоречие с наблюдениями (см., например, опыт Майкельсона).

Wikimedia Foundation . 2010 .

Параллелограмм скоростей - геометрическое построение, выражающее закон сложения скоростей. Правило П. с. состоит в том, что при сложном движении (см. Относительное движение) абсолютная скорость точки представляется как диагональ параллелограмма, построенного на… … Большая советская энциклопедия

Специальная теория относительности - Почтовая марка с формулой E = mc2, посвящённая Альберту Эйнштейну, одному из создателей СТО. Специальная теор … Википедия

Пуанкаре, Анри - Анри Пуанкаре Henri Poincaré Дата рождения: 29 апреля 1854(1854 04 29) Место рождения: Нанси … Википедия

Закон сложения скоростей в классической механике

Основная статья: Теорема о сложении скоростей

В классической механике абсолютная скорость точки равна векторной сумме её относительной и переносной скоростей:

Данное равенство представляет собой содержание утверждения теоремы о сложении скоростей.

Простым языком: Скорость движения тела относительно неподвижной системы отсчёта равна векторной сумме скорости этого тела относительно подвижной системы отсчета и скорости (относительно неподвижной системы) той точки подвижной системы отсчёта, в которой в данный момент времени находится тело.

1. Абсолютная скорость мухи, ползущей по радиусу вращающейся граммофонной пластинки, равна сумме скорости её движения относительно пластинки и той скорости, которую имеет точка пластинки под мухой относительно земли (то есть с которой её переносит пластинка за счёт своего вращения).

2. Если человек идёт по коридору вагона со скоростью 5 километров в час относительно вагона, а вагон движется со скоростью 50 километров в час относительно Земли, то человек движется относительно Земли со скоростью 50 + 5 = 55 километров в час, когда идёт по направлению движения поезда, и со скоростью 50 - 5 = 45 километров в час, когда он идёт в обратном направлении. Если человек в коридоре вагона движется относительно Земли со скоростью 55 километров в час, а поезд со скоростью 50 километров в час, то скорость человека относительно поезда 55 - 50 = 5 километров в час.

3. Если волны движутся относительно берега со скоростью 30 километров в час, и корабль также со скоростью 30 километров в час, то волны движутся относительно корабля со скоростью 30 - 30 = 0 километров в час, то есть относительно корабля они становятся неподвижными.

Из формулы для ускорений следует, что если движущаяся система отсчета движется относительно первой без ускорения, то есть , то ускорение тела относительно обеих систем отсчета одинаково.

Поскольку в Ньютоновской динамике из кинематических величин именно ускорение играет роль (см. второй закон Ньютона), то, если довольно естественно предположить, что силы зависят лишь от относительного положения и скоростей физических тел (а не их положения относительно абстрактного начала отсчета), окажется, что все уравнения механики запишутся одинаково в любой инерциальной системе отсчета - иначе говоря, законы механики не зависят от того, в какой из инерциальных систем отсчета мы их исследуем, не зависят от выбора в качестве рабочей какой-либо конкретной из инерциальных систем отсчета.

Также - поэтому - не зависит от такого выбора системы отсчета наблюдаемое движение тел (учитывая, конечно, начальные скорости). Это утверждение известно как принцип относительности Галилея , в отличие от Принципа относительности Эйнштейна

Иным образом этот принцип формулируется (следуя Галилею) так:

Если в двух замкнутых лабораториях, одна из которых равномерно прямолинейно (и поступательно) движется относительно другой, провести одинаковый механический эксперимент, результат будет одинаковым.

Требование (постулат) принципа относительности вместе с преобразованиями Галилея, представляющимися достаточно интуитивно очевидными, во многом следует форма и структура ньютоновской механики (и исторически также они оказали существенное влияние на ее формулировку). Говоря же несколько более формально, они накладывают на структуру механики ограничения, достаточно существенно влияющие на ее возможные формулировки, исторически весьма сильно способствовавшие ее оформлению.

Центра масс системы материальных точек

Положение центра масс (центра инерции) системы материальных точек в классической механике определяется следующим образом:

где - радиус-вектор центра масс, - радиус-вектор i -й точки системы, - масса i -й точки.

Для случая непрерывного распределения масс:

где - суммарная масса системы, - объём, - плотность. Центр масс, таким образом, характеризует распределение массы по телу или системе частиц.

Можно показать, что если система состоит не из материальных точек, а из протяжённых тел с массами , то радиус-вектор центра масс такой системы связан с радиус-векторами центров масс тел соотношением:

Иначе говоря, в случае протяжённых тел справедлива формула, по своей структуре совпадающая с той, что используется для материальных точек.

Закон движения центра масс

Теорема о движении центра масс (центра инерции) системы - одна из общих теорем динамики, является следствием законов Ньютона. Утверждает, что ускорение центра масс механической системы не зависит от внутренних сил, действующих на тела системы, и связывает это ускорение с внешними силами, действующими на систему.

Объектами, о которых идёт речь в теореме, могут, в частности, являться следующие:

Импульс материальной точки и системы тел — это физическая векторная величина, которая является мерой действия силы, и зависит от времени действия силы.

Закон сохранения импульса (доказательство)

Закон сохранения импульса (Закон сохранения количества движения) утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему, равна нулю.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса связан, согласно теореме Нётер, с одной из фундаментальных симметрий, - однородностью пространства .

Согласно второму закону Ньютона для системы из N частиц:

где импульс системы

а - равнодействующая всех сил, действующих на частицы системы

Для систем из N частиц, в которых сумма всех внешних сил равна нулю

или для систем, на частицы которых не действуют внешние силы (для всех k от 1 до n), имеем

Как известно, если производная от некоторого выражения равна нулю, то это выражение есть постоянная величина относительно переменной дифференцирования, а значит:

(постоянный вектор).

То есть суммарный импульс системы из N частиц, где N любое целое число, есть величина постоянная. Для N = 1 получаем выражение для одной частицы.

Закон сохранения импульса выполняется не только для систем, на которые не действуют внешние силы, но и для систем, сумма всех внешних сил равна нулю. Равенство нулю всех внешних сил достаточно, но не необходимо для выполнения закона сохранения импульса.

Если проекция суммы внешних сил на какую-либо направление или координатную ось равна нулю, то в этом случае говорят о законе сохранения проекции импульса на данное направление или координатную ось.

Динамика вращательного движения твердого тела

Основной закон динамики МАТЕРИАЛЬНОЙ ТОЧКИ при вращательном движении можно сформулировать следующим образом:

«Произведение момента инерции на угловое ускорение равно результирующему моменту сил, действующих на материальную точку: «M = I·e.

Основной закон динамики вращательного движения ТВЕРДОГО ТЕЛА относительно закрепленной точки можно сформулировать следующим образом:

«Произведение момента инерции тела на его угловое ускорение равно суммарному моменту внешних сил, действующих на тело. Моменты сил и инерции берутся относительно оси (z), вокруг которой происходит вращение: «

Основные понятия: момент силы, момент инерции, момент импульса

Момент силы (синонимы: крутящий момент, вращательный момент, вертящий момент, вращающий момент) - векторная физическая величина, равная векторному произведению радиус-вектора (проведённого от оси вращения к точке приложения силы - по определению) на вектор этой силы. Характеризует вращательное действие силы на твёрдое тело.

Понятия «вращающий» и «крутящий» моменты в общем случае не тождественны, так как в технике понятие «вращающий» момент рассматривается как внешнее усилие, прикладываемое к объекту, а «крутящий» - внутреннее усилие, возникающее в объекте под действием приложенных нагрузок (этим понятием оперируют в сопротивлении материалов).

Момент инерции - скалярная (в общем случае - тензорная) физическая величина, мера инертности во вращательном движении вокруг оси, подобно тому, как масса тела является мерой его инертности в поступательном движении. Характеризуется распределением масс в теле: момент инерции равен сумме произведений элементарных масс на квадрат их расстояний до базового множества (точки, прямой или плоскости).

Единица измерения в Международной системе единиц (СИ): кг·м².

Момент импульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массывращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, не лежащей на линии движения, оно также обладает моментом импульса. Наибольшую, пожалуй, роль момент импульса играет при описании собственно вращательного движения. Однако крайне важен и для гораздо более широкого класса задач (особенно - если в задаче есть центральная или осевая симметрия, но не только в этих случаях).

Замечание: момент импульса относительно точки - это псевдовектор, а момент импульса относительно оси - псевдоскаляр.

Момент импульса замкнутой системы сохраняется.

Мы говорили, что скорость света - максимально возможная скорость распространения сигнала. Но что будет, если свет испускается движущимся источником в направлении его скорости V ? Согласно закону сложения скоростей, следующему из преобразований Галилея, скорость света должна быть равна c + V . Но в теории относительности это невозможно. Посмотрим, какой закон сложения скоростей следует из преобразований Лоренца. Для этого запишем их для бесконечно малых величин:

По определению скорости ее компоненты в системе отсчета K находятся как отношения соответствующих перемещений к временным интервалам:

Аналогично определяется скорость объекта в движущейся системе отсчета K" , только пространственные расстояния и временные интервалы надо взять относительно этой системы:

Следовательно, разделив выражение dx на выражение dt , получим:

Разделив числитель и знаменатель на dt" , находим связь x -компонент скоростей в разных системах отсчета, которая отличается от галилеевского правила сложения скоростей:

Кроме того, в отличие от классической физики, меняются и компоненты скоростей, ортогональные направлению движения. Аналогичные вычисления для других компонент скоростей дают:

Таким образом, получены формулы для преобразования скоростей в релятивистской механике. Формулы обратного преобразования получаются при замене штрихованных величин на нештрихованные и обратно и заменой V на –V .

Теперь мы можем ответить на вопрос, поставленный в начале данного раздела. Пусть в точке 0" движущейся системы отсчета K" установлен лазер, посылающий импульс света в положительном направлении оси 0"х" . Какой будет скорость импульса для неподвижного наблюдателя в системе отсчета К ? В этом случае скорость светового импульса в системе отсчета К" имеет компоненты

Применяя закон релятивистского сложения скоростей, находим для компонент скорости импульса относительно неподвижной системы К :

Мы получаем, что скорость светового импульса и в неподвижной системе отсчета, относительно которой источник света движется, равна

Тот же результат получится при любом направлении распространения импульса. Это естественно, так как независимость скорости света от движения источника и наблюдателя заложена в одном из постулатов теории относительности. Релятивистский закон сложения скоростей - следствие этого постулата.

Действительно, когда скорость движения подвижной системы отсчета V << c , преобразования Лоренца переходят в преобразования Галилея, мы получаем обычный закон сложения скоростей

При этом ход течения времени и длина линейки будут одинаковы в обеих системах отсчета. Таким образом, законы классической механики применимы, если скорости объектов много меньше скорости света. Теория относительности не зачеркнула достижения классической физики, она установила рамки их справедливости.

Пример. Тело со скоростью v 0 налетает перпендикулярно на стенку, двигающуюся ему навстречу со скоростью v . Пользуясь формулами для релятивистского сложения скоростей, найдем скорость v 1 тела после отскока. Удар абсолютно упругий, масса стенки намного больше массы тела.

Воспользуемся формулами, выражающими релятивистский закон сложения скоростей.

Направим ось х вдоль начальной скорости тела v 0 и свяжем систему отсчета K" со стенкой. Тогда v x = v 0 и V = –v . В системе отсчета, связанной со стенкой, начальная скорость v" 0 тела равна

Вернемся теперь назад в лабораторную систему отсчета К . Подставляя в релятивистский закон сложения скоростей v" 1 вместо v" x и учитывая опять же V = –v , находим после преобразований:

2.СКОРОСТЬ ТЕЛА.ПРЯМОЛИНЕЙНОЕ РАВНОМЕРНОЕ ДВИЖЕНИЕ.

Скорость – это количественная характеристика движения тела.

Средняя скорость – это физическая величина, равная отношению вектора перемещения точки к промежутку времени Δt, за который произошло это перемещение. Направление вектора средней скорости совпадает с направлением вектора перемещения . Средняя скорость определяется по формуле:

Мгновенная скорость , то есть скорость в данный момент времени – это физическая величина, равная пределу, к которому стремится средняя скорость при бесконечном уменьшении промежутка времени Δt:

Иными словами, мгновенная скорость в данный момент времени – это отношение очень малого перемещения к очень малому промежутку времени, за который это перемещение произошло.

Вектор мгновенной скорости направлен по касательной к траектории движения тела (рис. 1.6).

Рис. 1.6. Вектор мгновенной скорости.

В системе СИ скорость измеряется в метрах в секунду, то есть единицей скорости принято считать скорость такого равномерного прямолинейного движения, при котором за одну секунду тело проходит путь в один метр. Единица измерения скорости обозначается м/с . Часто скорость измеряют в других единицах. Например, при измерении скорости автомобиля, поезда и т.п. обычно используется единица измерения километр в час:

1 км/ч = 1000 м / 3600 с = 1 м / 3,6 с

1 м/с = 3600 км / 1000 ч = 3,6 км/ч

Сложение скоростей(возможно не обязательно тот же вопрос будет и в 5).

Скорости движения тела в различных системах отсчёта связывает между собой классический закон сложения скоростей .

Скорость тела относительно неподвижной системы отсчёта равна сумме скоростей тела в подвижной системе отсчёта и самой подвижной системы отсчёта относительно неподвижной.

Например, пассажирский поезд движется по железной дороге со скоростью 60 км/ч. По вагону этого поезда идет человек со скоростью 5 км/ч. Если считать железную дорогу неподвижной и принять её за систему отсчёта, то скорость человека относительно системы отсчёта (то есть относительно железной дороги), будет равна сложению скоростей поезда и человека, то есть

60 + 5 = 65, если человек идёт в том же направлении, что и поезд

60 – 5 = 55, если человек и поезд движутся в разных направлениях

Однако это справедливо только в том случае, если человек и поезд движутся по одной линии. Если же человек будет двигаться под углом, то придётся учитывать этот угол, вспомнив о том, что скорость – это векторная величина .

Красным выделен пример + Закон сложения перемещения (думаю это не надо учить, но для общего развития можно и прочитать)

А теперь рассмотрим описанный выше пример более подробно – с деталями и картинками.

Итак, в нашем случае железная дорога – это неподвижная система отсчёта . Поезд, который движется по этой дороге – это подвижная система отсчёта . Вагон, по которому идёт человек, является частью поезда.

Скорость человека относительно вагона (относительно подвижной системы отсчёта) равна 5 км/ч. Обозначим её буквой Ч.

Скорость поезда (а значит и вагона) относительно неподвижной системы отсчёта (то есть относительно железной дороги) равна 60 км/ч. Обозначим её буквой В. Иначе говоря, скорость поезда – это скорость подвижной системы отсчёта относительно неподвижной системы отсчёта.

Скорость человека относительно железной дороги (относительно неподвижной системы отсчёта) нам пока неизвестна. Обозначим её буквой .

Свяжем с неподвижной системой отсчёта (рис. 1.7) систему координат ХОY, а с подвижной системой отсчёта – систему координат X П О П Y П. А теперь попробуем найти скорость человека относительно неподвижной системы отсчёта, то есть относительно железной дороги.

За малый промежуток времени Δt происходят следующие события:

Тогда за этот промежуток времени перемещение человека относительно железной дороги:

Это закон сложения перемещений . В нашем примере перемещение человека относительно железной дороги равно сумме перемещений человека относительно вагона и вагона относительно железной дороги.

Рис. 1.7. Закон сложения перемещений.

Закон сложения перемещений можно записать так:

= Δ Ч Δt + Δ B Δt

Скорость человека относительно железной дороги равна:

Скорость человека относительно вагона:

Δ Ч = Ч / Δt

Скорость вагона относительно железной дороги:

Поэтому скорость человека относительно железной дороги будет равна:

Это закон сложения скоростей :

Равномерное движение – это движение с постоянной скоростью, то есть когда скорость не изменяется (v = const) и ускорения или замедления не происходит (а = 0).

Прямолинейное движение – это движение по прямой линии, то есть траектория прямолинейного движения – это прямая линия.

Равномерное прямолинейное движение – это движение, при котором тело за любые равные промежутки времени совершает одинаковые перемещения. Например, если мы разобьём какой-то временной интервал на отрезки по одной секунде, то при равномерном движении тело будет перемещаться на одинаковое расстояние за каждый из этих отрезков времени.

Скорость равномерного прямолинейного движения не зависит от времени и в каждой точке траектории направлена также, как и перемещение тела. То есть вектор перемещения совпадает по направлению с вектором скорости. При этом средняя скорость за любой промежуток времени равна мгновенной скорости:

Скорость равномерного прямолинейного движения – это физическая векторная величина, равная отношению перемещения тела за любой промежуток времени к значению этого промежутка t:

Таким образом, скорость равномерного прямолинейного движения показывает, какое перемещение совершает материальная точка за единицу времени.

Перемещение при равномерном прямолинейном движении определяется формулой:

Пройденный путь при прямолинейном движении равен модулю перемещения. Если положительное направление оси ОХ совпадает с направлением движения, то проекция скорости на ось ОХ равна величине скорости и положительна:

v x = v, то есть v > 0

Проекция перемещения на ось ОХ равна:

s = vt = x – x 0

где x 0 – начальная координата тела, х – конечная координата тела (или координата тела в любой момент времени)

Уравнение движения , то есть зависимость координаты тела от времени х = х(t), принимает вид:

Если положительное направление оси ОХ противоположно направлению движения тела, то проекция скорости тела на ось ОХ отрицательна, скорость меньше нуля (v < 0), и тогда уравнение движения принимает вид.

Классическая механика использует понятие абсолютной скорости точки. Она определяется как сумма векторов относительной и переносной скоростей этой точки. Подобное равенство содержит утверждение теоремы о сложении скоростей. Принято представлять, что скорость движения определенного тела в неподвижной системе отсчета является равной векторной сумме скорости такого же физического тела относительно подвижной системе отсчета. В этих координатах находится непосредственно тело.

Рисунок 1. Классический закон сложения скоростей . Автор24 - интернет-биржа студенческих работ

Примеры закона сложения скоростей в классической механике

Рисунок 2. Пример сложения скоростей. Автор24 - интернет-биржа студенческих работ

Существует несколько основных примеров сложения скоростей, согласно установленным правилам, взятым за основу в механической физике. В качестве простейших объектов при рассмотрении физических законов может быть взят человек и любое движущееся тело в пространстве, с которым происходит прямое или косвенное взаимодействие.

Пример 1

Например, человек, который движется по коридору пассажирского поезда со скоростью пять километров в час, при этом состав двигается со скоростью 100 километров в час, то он относительно окружающего пространства двигается со скоростью 105 километров в час. При этом направление движения человека и транспортного средства должны совпадать. Такой же принцип действует и при движении в обратном направлении. В этом случае человек будет перемещаться относительно земной поверхности со скоростью 95 километров в час.

Если значения скорости двух объектов относительно друг друга будут совпадать, то они станут неподвижными с точки зрения движущихся объектов. При вращении скорость изучаемого объекта равна сумме скоростей движения объекта относительно движущейся поверхности другого объекта.

Принцип относительности Галилея

Ученые смогли сформулировать основные формулы для ускорений объектов. Из нее следует, что движущаяся система отсчета удаляется относительно другой без видимого ускорения. Это закономерно в тех случаях, когда ускорение тел происходит одинаково в разных системах отсчета.

Подобные рассуждения берут начало еще во времена Галилея, когда сформировался принцип относительности. Известно, что по второму закону Ньютона ускорение тел имеет принципиальное значение. От этого процесса зависит относительное положение двух тел в пространстве, скорость физических тел. Тогда все уравнения можно записать одинаковым образом в любой инерциальной системе отсчета. Это говорит о том, что классические законы механики не будут иметь зависимость от положения в инерциальной системе отсчета, как принято действовать при осуществлении исследования.

Наблюдаемое явление также не имеет зависимость от конкретного выбора системы отсчета. Подобные рамки в настоящее время рассматриваются как принцип относительности Галилея. Он вступает в некоторые противоречия с иными догмами физиков-теоретиков. В частности, теория относительности Альберта Эйнштейна предполагает иные условия действия.

Принцип относительности Галилея базируется на нескольких основных понятиях:

  • в двух замкнутых пространствах, которые движутся прямолинейно и равномерно относительно друг друга, результат внешнего воздействия всегда будет иметь одинаковое значение;
  • подобный результат будет действителен только для любого механического действия.

В историческом контексте изучения основ классической механики , подобная трактовка физических явлений сформировалась во многом, как результат интуитивного мышления Галилея, что подтвердилось в научных трудах Ньютона, когда тот представил свою концепцию классической механики . Однако подобные требования по Галилею могут накладывать на структуру механики некоторые ограничения. Это влияет на ее возможные формулировки, оформление и развитие.

Закон движения центра масс и закон сохранения импульса

Рисунок 3. Закон сохранения импульса. Автор24 - интернет-биржа студенческих работ

Одной из общих теорем в динамике стала теорема центра инерции. Ее также называют теоремой о движении центра масс системы. Подобный закон можно вывести из общих законов Ньютона. Согласно ему, ускорение центра масс в динамической системе не является прямым следствием внутренних сил, которые действуют на тела всей системы. Оно способно связать процесс ускорения с внешними силами, которые действуют на такую систему.

Рисунок 4. Закон движения центра масс. Автор24 - интернет-биржа студенческих работ

В качестве объектов, о которых идет речь в теореме, выступают:

  • импульс материальной точки;
  • система тел.

Эти объекты можно описать как физическую векторную величину. Она является необходимой мерой воздействия силы, при этом полностью зависит от времени действия силы.

При рассмотрении закона сохранения количества движения утверждается, что векторная сумма импульсов всех тел система полностью представляется как постоянная величина. При этом векторная сумма внешних сил, которые действуют на всю систему, должна быть равна нулю.

При определении скорости в классической механике также используют динамику вращательного движения твердого тела и момент импульса. Момент импульса имеет все характерные признаки количества вращательного движения. Исследователи используют это понятие как величину, которая зависит от количества вращающейся массы, а также как она распределена по поверхности относительно оси вращения. При этом имеет значение скорости вращения.

Вращение также можно понимать не только с точки зрения классического представления вращения тела вокруг оси. При прямолинейном движении тела мимо некой неизвестной воображаемой точки, которая не лежит на линии движения, тело также может обладать моментом импульса. При описании вращательного движения момента импульса играет самую существенную роль. Это очень важно при постановке и решении разнообразных задач, связанных с механикой в классическом понимании.

В классической механике закон сохранения импульса является следствием ньютоновской механики. Он наглядно показывает, что при движении в пустом пространстве импульс сохраняется во времени. Если существует взаимодействие, то скорость его изменения определяется суммой приложенных сил.